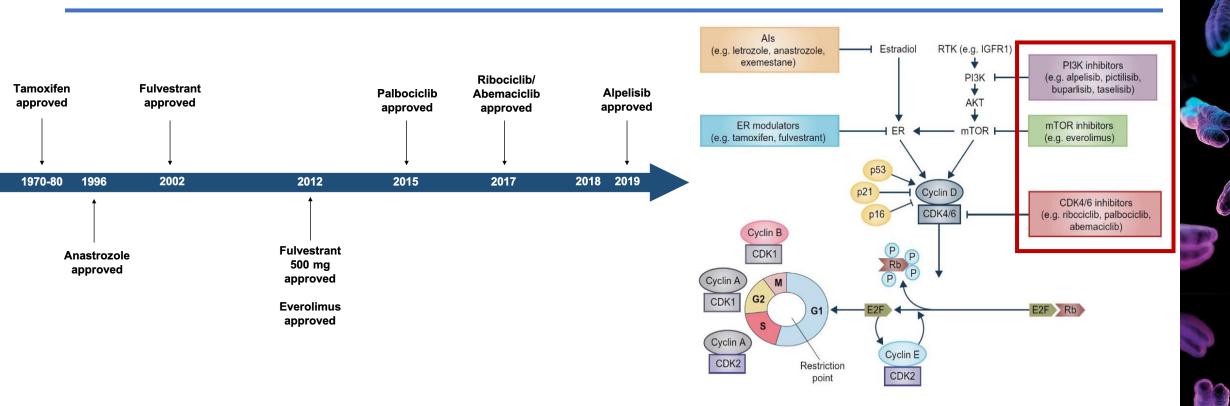
Endocrine Resistance: Emerging Mechanisms and Therapies in Metastatic ER+ Breast Cancer

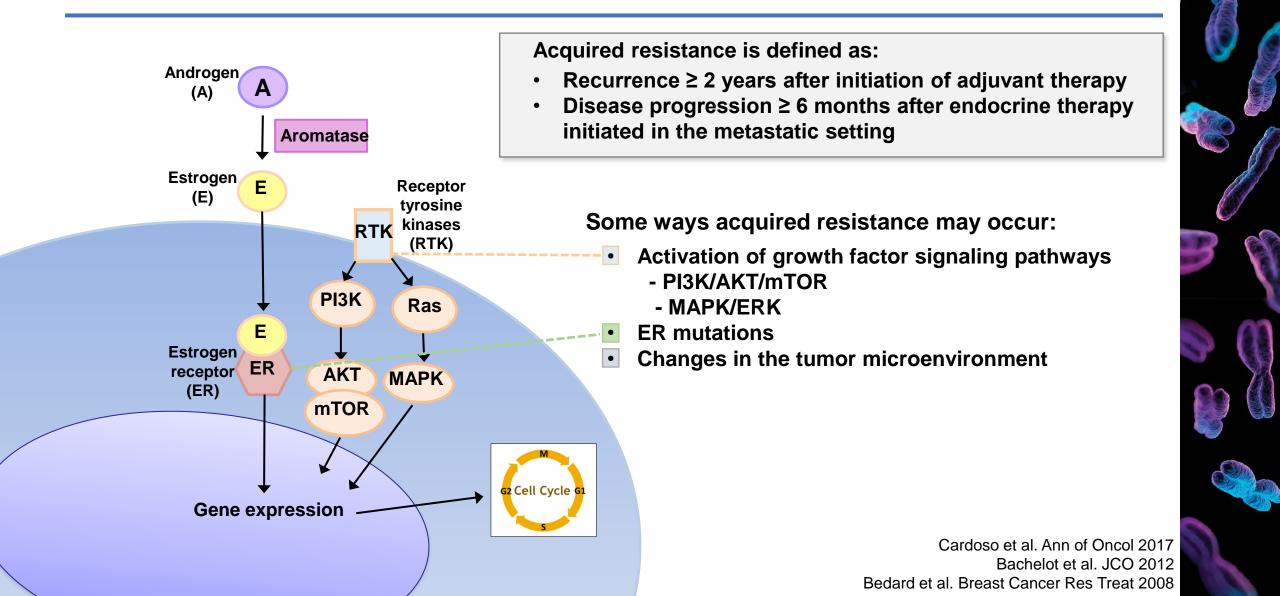
Ingrid A. Mayer MD, MSCI

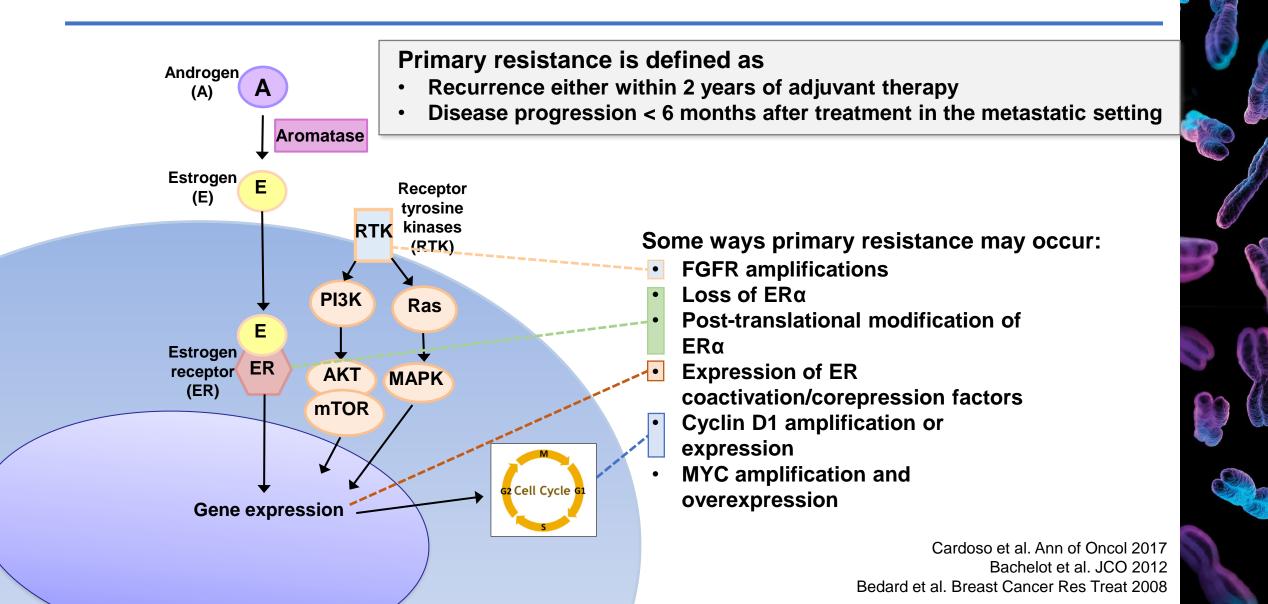
Professor of Medicine Ingram Professor of Cancer Research Co-Leader, Breast Cancer Program Vanderbilt University Medical Center/ Vanderbilt-Ingram Cancer Center


Disclosures

- Grant/Research Support from AstraZeneca, Genentech, Immunomedics, Lilly, Pfizer & Puma.
- Consultant for AbbVie, AstraZeneca, Blueprint Medicines, Cyclacel, Genentech, GlaxoSmithKlein, Immunomedics, Lilly, Macrogenics, Novartis, Pfizer, Puma & Seagen.

I will be discussing the off-label/investigational use of Selective Estrogen Receptor Degraders (SERDs), Neratinib, Erdafitinib, and Enobosarm.


The Landscape of HR+ MBC Treatment


References: 1. Jordan VC. Tamoxifen as the first targeted long-term adjuvant therapy for breast cancer. Indocr Relat Cancer. 2014;21(3):R235–R246. Published 2014 May 6. doi:10.1530/ERC-14-0092 2. a potent and selective aromatase inhibitor, versus megestrol actate in postmenopausal women with advanced breast cancer: results of overview analysis of two phase III trials. Artimidex Study Group. J (10) Gnool. 1996;147():2000 - 3. Morris C. Wakeling A. Fulvestrant (Fasidoex') – a new treatment option for patients progressing on prior endocrine therapy. Endocr Relat Cancer: 2002;49(12):672-76. 4. J) (10) Gnool. 1996;147():2000 - 3. Morris C. Wakeling A. Fulvestrant (Fasidoex') – a new treatment option for patients progressing on prior endocrine therapy. Endocr Relat Cancer. 2002;49(12):672-76. 4. J) (10) Gnool. 1996;147():2000 - 3. Morris C. Wakeling A. Fulvestrant (Fasidoex') – a new treatment option endocrine therapy. Endocr Relat Cancer. 2002;49(12):672-76. 4. J) (10) Gnool. 1996;147():2000 - 3. Morris C. Wakeling A. Fulvestrant (Fasidoex') – a new treatment option endocrine therapy. Endocr Relat Cancer. 2002;49(12):672-76. 4. J) (10) Gnool. 1996;147():2000 - 3. Morris C. Wakeling A. Fulvestrant (Fasidoex') – a new treatment option endocrine therapy. Endocr Relat Cancer. 2002;49(12):672-76. 4. J) (10) Gnool. 1996;147():2000 - 3. Morris C. Wakeling A. Fulvestrant (Fasidoex') – a new treatment option endocrine therapy. E

Acquired resistance to ET in HR+ BC

Primary resistance to ET in HR+ BC

PFS in 1st and 2nd line treatment of HR+ MBC with CDK4/6 Inhibitors

		1 st LINE	TREATMENT	≥ 2 nd LINE T	1 st AND 2 nd LINE TREATMENT		
	PALOMA-2	MONALEESA-2	MONARCH-3	MONALEESA-7	PALOMA-3	MONARCH-2	MONALEESA-3
Design	Phase III placebo control	Phase III placebo control	Phase III placebo control	Phase III placebo control (pre-menopausal patients only)	Phase III placebo control	Phase III placebo control	Phase III placebo control
Endocrine partner	Letrozole	Letrozole	Letrozole	Letrozole (or Tamoxifen) + LHRH agonist	Fulvestrant	Fulvestrant	Fulvestrant
CDK4/6 Inhibitor	Palbociclib	Ribociclib	Abemaciclib	Ribociclib	Palbociclib	Abemaciclib	Ribociclib
Patients on study, n	666	668	493	672	521	669	726
		Prima	ary Endpoint = PFS	(CDK4/6 inhibitor + ET	vs. ET)		
HR	0.58	0.56	0.54	0.55	0.46	0.55	0.59
Median PFS, months			23.8 vs 13 (10.8 mo)	9.5 vs 4.6 (4.9 mo)	16.4 vs 9.3 (7.1 mo)	20.5 vs 12.8 (7.7 mo)	

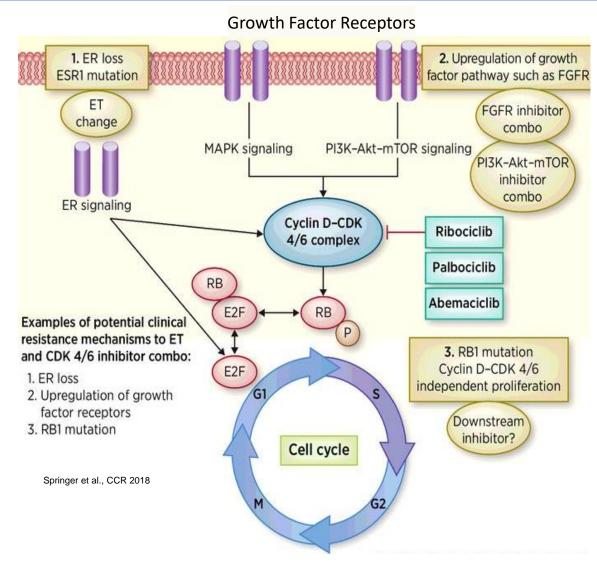
VANDERBILT VUNIVERSITY MEDICAL CENTER

Cristofanilli et al, Lancet Oncology 2016; Finn et al, NEJM 2016; Hortobagyi et al, NEJM 2016; Tripathy et al, Lancet 2018; Sledge et al, JCO 2017; Goetz et al, JCO 2017; Slamon et al, JCO 2018; Llombart-Cussac et al, ASCO 2020

OS in 1st line treatment of HR+ MBC with CDK4/6 Inhibitors

	1 st LINE TREATMENT							
	PALOMA-2	MONARCH-3	MONALEESA-2	MONALEESA-7				
Design	Phase III placebo control	Phase III placebo control	Phase III placebo control	Phase III placebo control (pre-menopausal patients only)				
Endocrine partner	Letrozole	Letrozole	Letrozole	Letrozole (or Tamoxifen) + LHRH agonist				
CDK4/6 Inhibitor	Palbociclib	Abemaciclib Ribociclib		Ribociclib				
Patients on study, n	666	493	668	672				
	OS (CDK4/6 inhibitor + ET vs. ET						
HR			0.76	0.76				
Median OS, months	Not yet reported (Aug 2023?)	Not yet reported (Dec 2021?)	63.9 vs 51.4	58.7 vs 40.9				
MEDICAL CENTER Fin	et al. NEJM 2016: Goetz et al. JCO 2017: Llombart-Cussac et al. ASCO 2020: Sledge et al. JAMA 2020: Hortobagyi et al. ESMO 2021							

MEDICAL CENTER Finn et al, NEJM 2016; Goetz et al, JCO 2017; Llombart-Cussac et al, ASCO 2020; Sledge et al, JAMA 2020; Hortobagyi et al, ESMO 2021

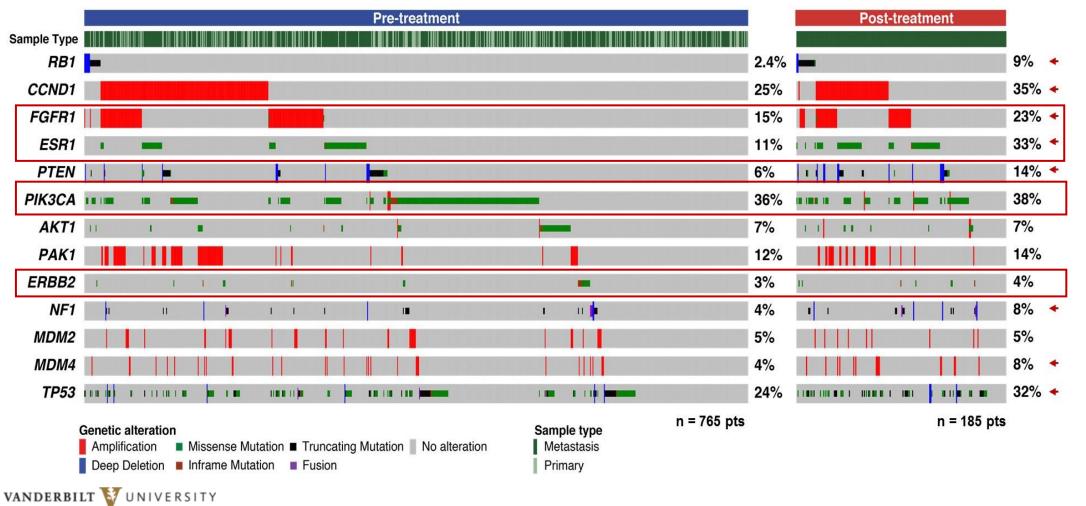

OS in 2nd line treatment of HR+ MBC with CDK4/6 inhibitors according to ET resistance

	≥ 2 nd LINE TREATMENT		1 st AND 2 nd LINE TREATMENT	1 st LINE TREATMENT	2 nd LINE TREATMENT
	PALOMA-3	MONARCH-2	MONALEESA-3	MONALEESA-3	MONALEESA-3
Design	Phase III placebo control	Phase III placebo control	Phase III placebo control	Phase III placebo control	Phase III placebo control
Endocrine partner	Fulvestrant	Fulvestrant	Fulvestrant	Fulvestrant	Fulvestrant
CDK4/6 Inhibitor	Palbociclib	Abemaciclib	Ribociclib	Ribociclib	Ribociclib
Patients on study, n	521	669	726	365	361
		OS (CDK4/6 inhil	bitor + ET vs. ET)		
Median OS, months	34.9 vs 28 (7 mo)	46.7 vs 37.3 (9 mo)	53.7 vs 41.5	NR vs 51.8	39.7 vs 33.7
HR	0.81	0.75	0.72	0.64	0.78
Primary resistance, early relapse, 2L	20.2 vs 26.2 (HR 1.14; NS)	38.7 vs 31.5 (HR 0.68)	35.6 vs 34 (HR 0.81)		
Secondary resistance, sensitivity to prior therapy, 1 L	39.7 vs 29.7 (HR 0.72)	48.8 vs 40.7 (HR 0.78)	49.0 vs 41.8 (HR 0.73)		

VANDERBILT VUNIVERSITY MEDICAL CENTER Im et al NEJM 2019 and SABCS 2020; Turner et al, NEJM 2018; Sledge et al, JAMA Oncol 2019; Slamon et al, JCO 2018 and ASCO 2021

Unanswered questions in CDK4/6i use:

- Optimal sequencing (1st or 2nd line)?
- Biomarkers (other than ER/PR positivity) help selection of patients?
- What to do upon progression?
 - Mechanisms of resistance still under investigation
 - Several combination studies with novel agents (targeted therapies, immunotherapy, etc.) under way



MEDICAL CENTER

VANDERBILT 💱 UNIVERSITY

Biomarkers beyond ER/PR: Common genomic alterations in HR+ MBC

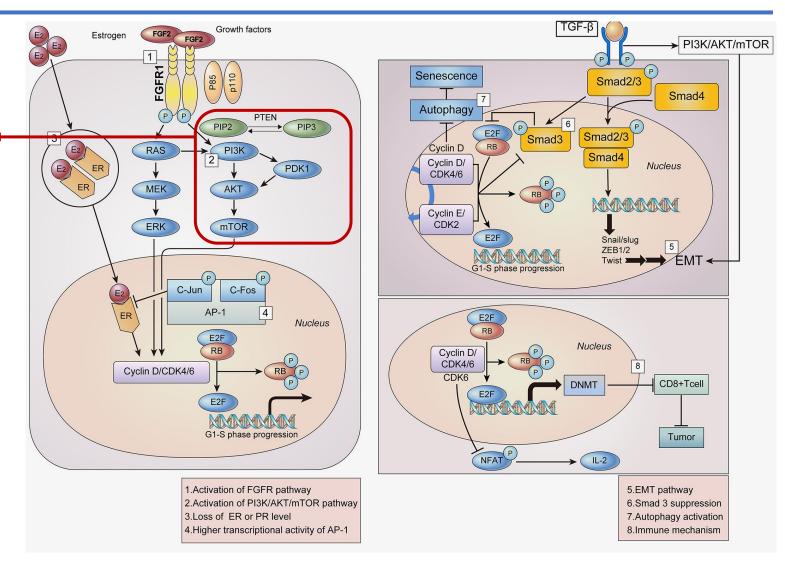
Mutations in Breast Cancer: comparison of pre-vs. post-CDK4/6i tumors

MEDICAL CENTER

Mechanisms of resistance to ET and CDK4/6i: PI3K Pathway

Confers malignant transformation, tumor invasion, enhanced angiogenesis and survival, drug resistance

p110α oncogenic mutations:
37% Endometrial
30-40% Breast
25% Colon


13% Bladder

PIK3CA amplified: 30% ovarian, lung

PTEN mutant/lost:

TN breast, prostate, glioblastoma, melanoma, pancreatic, endometrial, ovarian, lung, head and neck, hepatocellular, thyroid

VANDERBILT WUNIVERSITY MEDICAL CENTER

Pandey et al., IJC 2018

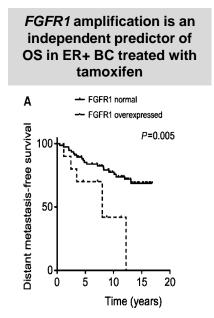
PFS and OS treatment of HR+ MBC with PI3K pathway inhibitors

	TAMRAD	HORIZON	BOLERO-2	prE102	SOLAR-1	BYLieve
Design	Phase II open label, ≥ 2 nd line	Phase III placebo control, 1 st line	Phase III placebo control, ≥ 2 nd line	Phase II placebo control, ≥ 2 nd line	Phase III placebo control, ≥ 2 nd line, no prior CDK4/6i	Phase II open-label (indirectly compared to rea world data) ≥ 2 nd line post-CDK4/6i
Endocrine partner	Tamoxifen	Letrozole	Exemestane	Fulvestrant	Fulvestrant	Fulvestrant or Letrozole
PI3K Pathway Inhibitor	Everolimus	Temsirolimus	Everolimus	Everolimus	Alpelisib	Alpelisib
Patients on study, n	111	1112	724	131	341 with <i>PIK3CA</i> m (572 total)	127 with <i>PIK3CA</i> m
		PFS (F	PI3K pathway inhibit	or vs. control)		
Median PFS, months	8.6 vs 4.5	9 vs 8.9	7.8 vs 3.2	10.3 vs 5.1	11 vs 5.7	7.3 "vs" 3.7
HR	0.54	0.90	0.45	0.61	0.65	N/A
		OS (PI3K pathway inhibi	tor vs. control)		
Median OS, months	Not reported	Not reported (most patients censored)	30.9 vs 26.5	28.3 vs 31.4	39.3 vs 31.4	N/A
HR	0.45	0.89	0.89	1.31	0.86	N/A

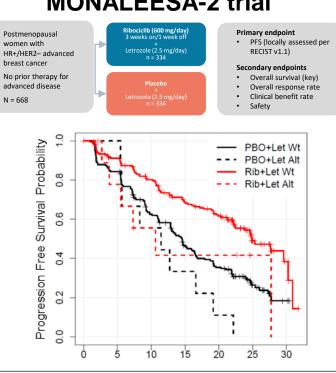
MEDICAL CENTER

VANDERBILT

UNIVERSITY Bachelot et al. JCO 2012; Wolff et al. JCO 2013; Baselga et al. NEJM 2012; Piccart et al. Annals of Onc 2014; Kornblum et al. JCO 2018; Andre et al. NEJM 2019; Andre et al. ESMO 2020; Rugo et al. ASCO 2020


Trials with PI3K pathways inhibitors addressing mechanisms of resistance to ET and CDK4/6i

Trial TRINITI-1 NCT02732119	Additional Agent/Strategy mTOR inhibitor (Everolimus/ribociclib/ exemestane)	 Progression on CDK4/6 inhibitor and AI after months as last therapy Ribociclib 300 mg/day Everolimus 2.5 mg/day Exemestane 25 mg/day Moulder, AAC 	
PASTOR NCT02599714	mTORC 1/2 inhibitor (Vistusertib)	EndpointResponse (n=43)Clinical Benefit39.5%	
NCT02871791	mTOR inhibitor (Everolimus/ palbociclib/ exemestane)	Partial Response 7%	
		52% ribooialib doco roduction	

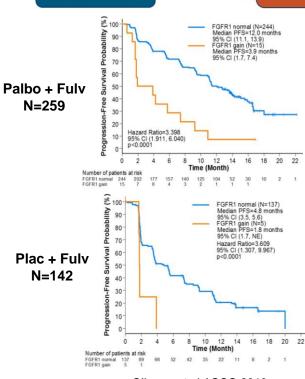

52% ribociclib dose reduction; 86% temporary interruption

FGFR1 amplification correlates with early progression on endocrine therapy and CDK4/6 inhibition

Elbauomy Elsheiks et al. Breast Cancer Res 2003 Karlsson et al. Genes Chr Cancer 2011 Turner et al. Cancer Res 2010

Group	FGFR1/ZNF703 alteration	N	Median PFS	HR (95% CI)	p	
Rib +	Wild-type	202	24.84	2.14 (0.93 – 4.94) 7.50e- ⁰		
Let	Amplified	10	10.61	2.14 (0.93 – 4.94)	7.508-0.2	
Plac +	Wild-type	205	14.59	4 64 (0 82 - 2 47)	1 70 - 01	
Let	Amplified	10	11.43	1.61 (0.82 – 3.17)	1.70e- ^{0.1}	

HR+, HER2- ABC


therapy

Pre-/peri-* or post-menopausal

Progressed on prior endocrine

-On or within 12 mo adjuvant

-On therapy for ABC

PALOMA-3 trial

2:1 Randomization

N=521

n=347

n=174

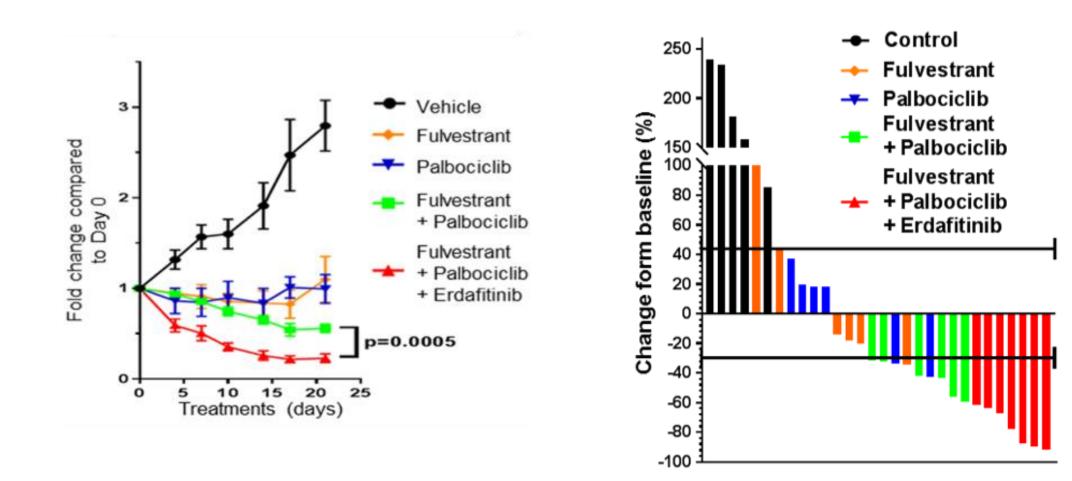
wks on/1 wk off

Fulvestrant

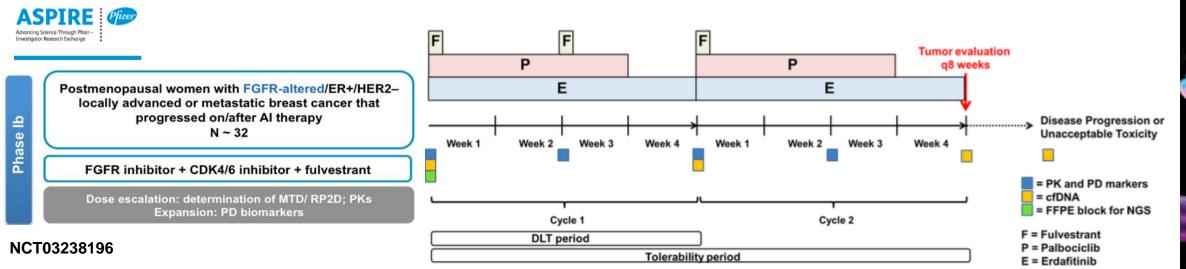
(500 mg IM q4w)

Placebo 3 wks on/ 1wk of

Fulvestrant[†] (500 mg IM q4w

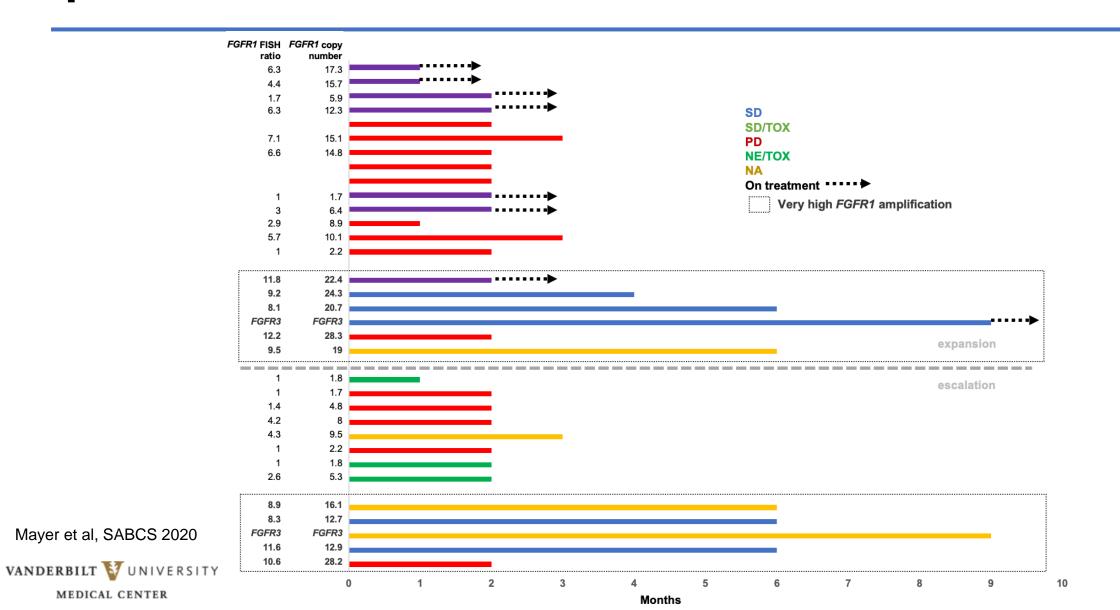

O'Leary et al ASCO 2019

MONALEESA-2 trial


Formisano et al. Nat Commun 2019

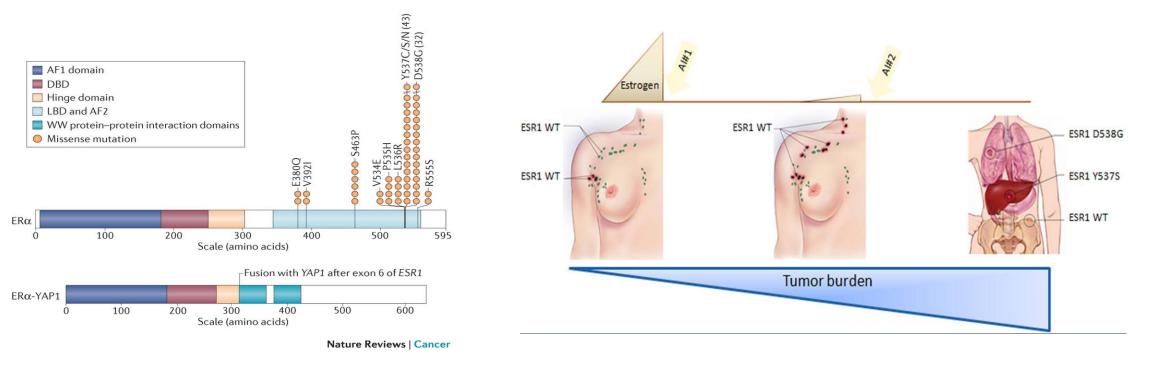
Triple therapy with fulvestrant/ palbociclib/ erdafitinib has potent activity against HR+/*FGFR1*-amplified PDXs

Phase Ib/II trial of fulvestrant + CDK4/6i palbociclib + pan-FGFR TKI erdafitinib in *FGFR*-amplified/ HR+ MBC



- HR+/HER2 neg MBC
- FGFR1 4 amplification
- Evaluable disease
- ≤ 2 lines chemotherapy
- Unlimited lines of ET, prior CDK4/6i allowed

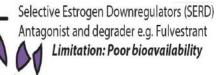
1 cycle = 28 days							
Dose	Fulvestrant	Palbociclib	Erdafitinib				
Level	(IM q28 days)	(PO x 21/ 28 days)	(PO daily)				
1			6 mg				
-1	500 mg	125 mg	5 mg				
-2			4 mg				



Clinical outcomes based on *FGFR1* FISH amplification results

Targeting ESR1 Mutations

ESR1 mutants favor formation of agonist conformation of Erα, enabling ligand-independent binding of co-activators = endocrine therapy (mainly tamoxifen and AI, fulvestrant a little less) resistance



Several oral SERDs in HR+ MBC

Aromatase Inhibitors (AI) Block synthesis of estrogen e.g. Letrozole

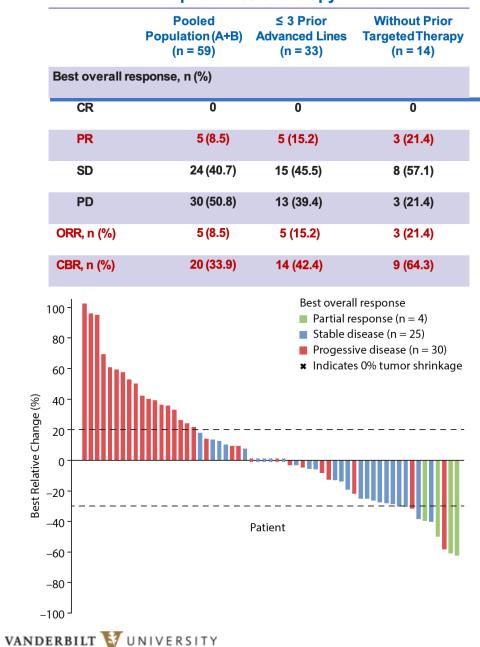
Drug	Company	Completed Trials	Ongoing Trials
GDC-9545	Genentech		Phase I dose escalation and expansion as a single agent and + palbociclib
RAD-1901/ Elacestrant	Radius	Phase 1 dose escalation and expansion Phase 1B FES-PET study	Phase III study of single agent vs TPC
AZD-9496	Astra Zeneca	Phase I dose escalation and expansion	Window pre-op study compared to fulvestrant x 1 dose accrual completed
AZD-9833	Astra Zeneca		Phase I dose escalation and expansion as a single agent and + palbociclib
SAR-439859	Sanofi	Part A presented at ASCO 2019	Phase I/II dose escalation and expansion as a single agent and + palbociclib
LSZ102	Novartis	Phase I single agent data presented at SABCS 2018	Phase I/Ib: Single agent, + ribociclib, + alpelisib
G1T48	G1 Therapeutics		Phase I: Single agent dose escalation and expansion
ZN-C5	Zeno		Phase I/II dose escalation and expansion as a single agent and + palbociclib
LY3484356	Lilly		

VANDERBILT VUNIVERSITY MEDICAL CENTER AMEERA-1; a phase 1/2 study of Amcenestrant (SAR439859), an oral SERD, as monotherapy and in combination with other anti-cancer therapies, in postmenopausal women with HR+ MBC

Amcenestrant monotherapy at an RP2D of 400 mg once daily: PK, safety, and antitumor activity, including *post hoc* analyses by prior therapy, and *ESR1* mutational status

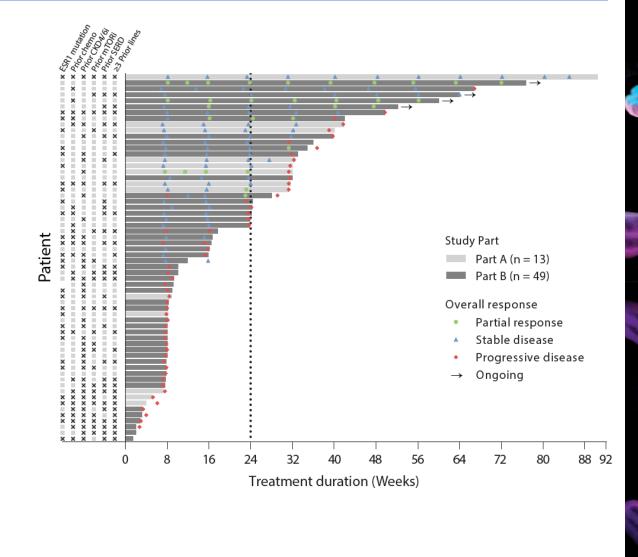
Key Inclusion Criteria - heavily pre-treated, endocrine sensitive patient population –Postmenopausal women with HR+ MBC

-Measurable disease and \geq 6 months of prior ET in the advanced setting - \leq 3 (Part A) or \leq 1 (Part B) chemotherapies in the advanced setting -Prior mTORi and \leq 1 prior CDK4/6i based therapy allowed


Heavily pre-treated patient population: Safety profile

Patient demographics and baseline ch	TRAEs occurring in	≥ 5% with Amcene	estrant≥ 150 mg QD	
Amcenestrant ≥ 150 mg QD	Pooled Population (N = 62)	_		
Median age, years (range)	63 (37–88)		Pooled Population	on (N = 62)
ECOG PS, n (%)		TRAEs, n (%)	All Grades	Grade ≥ 3
0 1	37 (59.7) 25 (40.3)	Any class	39 (62.9)	0
Prior advanced lines of therapy, median (range)	2 (1–8)	Hot flush	10 (16.1)	0
≥ 3 prior lines, n (%)	30 (48.4)	Constipation	6 (9.7)	0
Type of prior therapy in advanced setting, n (%)				0
SERD	29 (46.8)	Arthralgia	6 (9.7)	0
SERM	18 (29.0)	Decreased appetite	5 (8.1)	0
Aromatase inhibitors	59 (95.2)	Vomiting	5 (8.1)	0
mTOR inhibitors	21 (33.9)			
CDK4/6 inhibitors	39 (62.9)	Diarrhea	5 (8.1)	0
Chemotherapy	26 (41.9)	Nausea	5 (8.1)	0
Number of organs involved in metastatic disease, range	1–6	Fatigue	4 (6.5)	0
Visceral metastasis, n (%) VANDERBILT VUNIVERSITY	58 (93.5)			

Linden et al., SABCS 2020

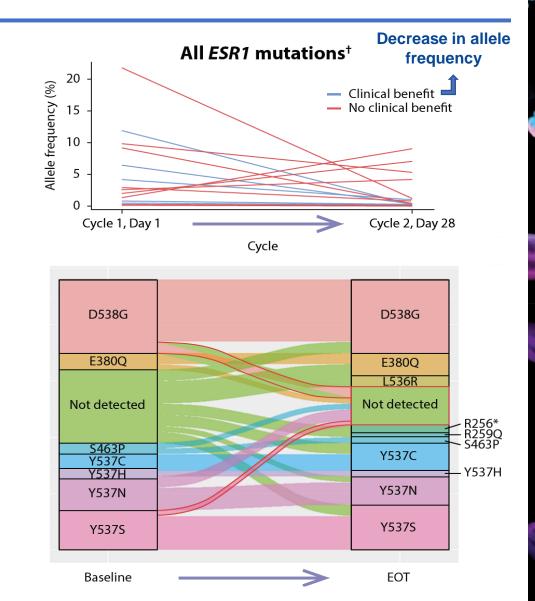

MEDICAL CENTER

Response rates in evaluable patients defined by prior lines of therapy

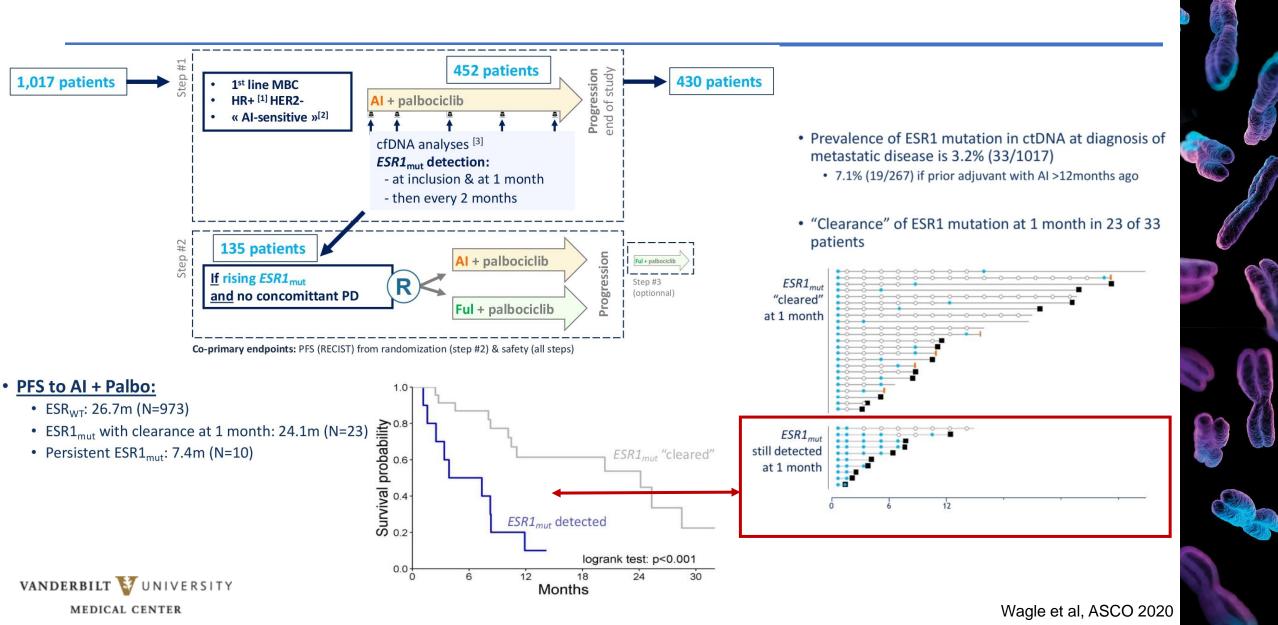
MEDICAL CENTER

Response rates and duration of therapy

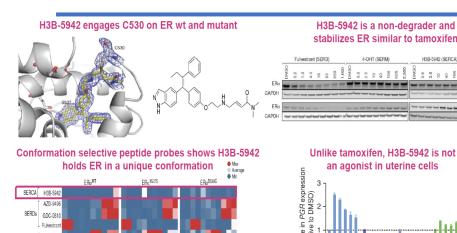
Linden et al., SABCS 2020


Clinical benefit and evolution of *ESR1* mutations in cfDNA over time

Clinical benefit (CB) rate in patients with available *ESR1* mutations at baseline


ESR1 Mutations	No CB (N = 22)	CB (N = 8)
D538G	13 (59.1%)	5 (62.5%)
E380Q	5 (22.7%)	0 (0.0%)
L536P	2 (9.1%)	0 (0.0%)
L536R	1 (4.5%)	0 (0.0%)
S463P	5 (22.7%)	1 (12.5%)
Y537C	4 (18.2%)	1 (12.5%)
Y537N	4 (18.2%)	3 (37.5%)
Y537S	4 (18.2%)	3 (37.5%)
L536H	0 (0.0%)	1 (12.5%)

VANDERBILT **W**UNIVERSITY MEDICAL CENTER


Linden et al., SABCS 2020

PADA-1 Study: ESR1mut and CDK4/6i

Selective ER covalent antagonists (SERCAs) for the treatment of ER α wt and ER α mut breast CA

Phase II

450 mg

(N=83)

Amendment (open

Addition of 14-18 patients with ESR1 Y537S mutation, in

absence of D538G

mutation

VANDERBILT STUNIVERSITY

MEDICAL CENTER

Phase I

600 mg (N=7)

450 mg

(N=11)

300 mg (N=11)

200 mg

(N=12)

100 mg (N=6) Following medicinal chemistry optimization in this indazole series, H3B-6545 was discovered. H3B-6545 binds covalently to a cysteine residue at position 530 of both wild-type and the constitutively active mutant ERα proteins, including Y537S and D538G

In vivo, H3B-6545 demonstrated significant single agent anti-tumor activity in xenograft mouse models representing ERα^{WT} and ERα^{Y537S} breast cancer (Smith et al. AACR 2017) and in PDX breast cancer models including *ESR1*mut (Korpal et al. SABCS 2017)

Phase I-II of oral H3B-6545 monotherapy trial

Best Overall Response by ESR1 Subtype

Response	450 mg, N=72 n (%)	Response	Clonal Y537S	Clonal D538G	Clonal Y537S or Clonal	Polyclonal Y537S and D538G	Y537S and D538G Negatives
Complete response	0		(N=10)	(N=17)	D538G (N=27)	(N=2)	(N=43)
Confirmed partial response	12 (17)		n (%)	n (%)	n (%)	n (%)	n (%)
Stable disease	31 (43)	Complete response	0	0	0	0	0
Progressive disease	27 (38)	Confirmed partial response	3 (30)	0	3 (11)	0	9 (21)
Not evaluable	2 (3)	Stable disease	4 (40)	10 (59)	14 (52)	1 (50)	16 (37)
ORR (%) (95% confidence interval) ²	17 (9, 27)	Progressive disease	3 (30)	7 (41)	10 (37)	1 (50)	16 (37)
Median duration of response (mo) (min, max)	7.5 (3.5, 16.6)	Not evaluable	0	0	0	0	2 (5)
Median time to response (mo) (min, max)	2.7 (1.6, 5.5)	Clinical benefit rate	6 (60)	6 (35)	12 (44)	1 (50)	16 (37)
Clinical benefit rate (CR + PR + SD≥23 weeks)	29 (40)	Median PFS (mo)	7.3	5.4	5.4	3.5	3.8

Best Overall Response

GDC-0810

Puyang et al., Cancer Disc 2018; Hamilton et al. ASCO 2021

Targeting *ESR1* Mutations with novel SERDs/ SERCAs

Several novel SERDs (e.g. rintodestrant; amcenestrant) and SERCAs (e.g. H3B-6545) are currently in clinical development with desirable clinical properties:

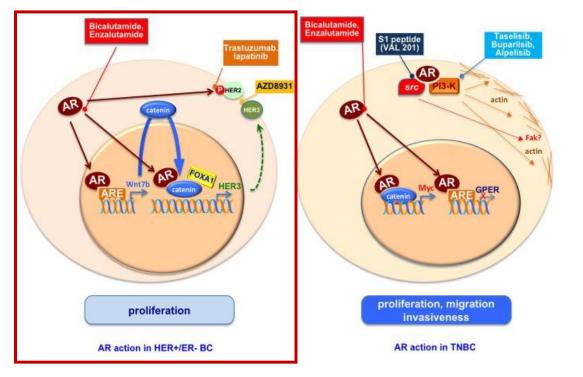
- Oral 🔽
- Good safety profile
- Effective against ESR1mut and ESR1wt HR+ MBC
- Better than fulvestrant ? Ongoing head-to-head comparisons with several SERDs
- Partner well with CDK4/6 and PI3K pathway inhibitors ?

Ongoing trials with expansion cohort combinations – could it circumvent resistance mechanisms such as *CCND1* variants?

ESR1 mutation clearance in cfDNA: a new surrogate marker for ET +/- targeted therapy benefit?

Androgen receptor (AR) in HR+ MBC

AR positivity (present in 70-95% of HR+ BC), but its role in HR+ BC depends on the tumor microenvironment as well as the relative levels of circulating estrogens and androgens


AR expression is often associated with a favorable prognosis in HR+ BC, <u>but</u> many findings suggest that, in some instances, high levels of AR can contribute to the therapy-resistance

AR stimulates <u>or</u> inhibits cellular proliferation; promotes metastatization and resistence to therapies in <u>HR+ BC cells</u>

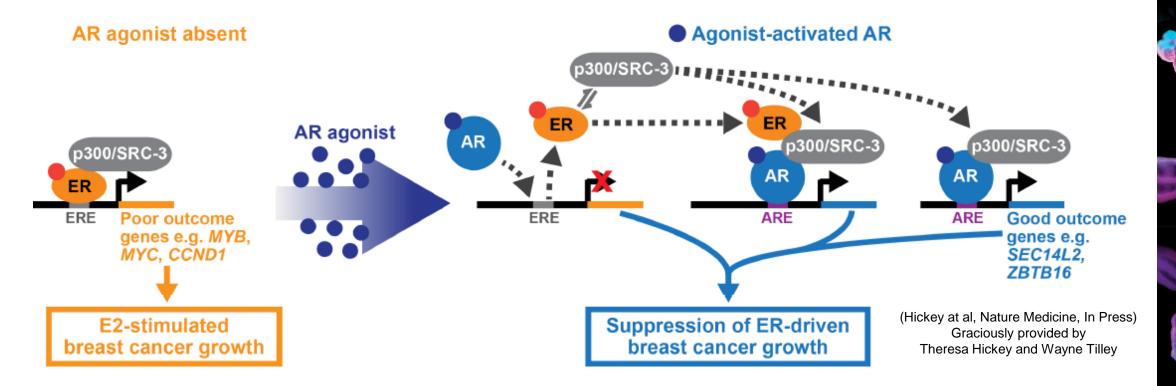
These opposing actions in HR+ BC depend on the multitude of proteins interacting with AR!!

VANDERBILT **W**UNIVERSITY MEDICAL CENTER

Giovanelli et al Front Endocrinol 2018 Michmerhuizen et al NPJ Breast Cancer 2020

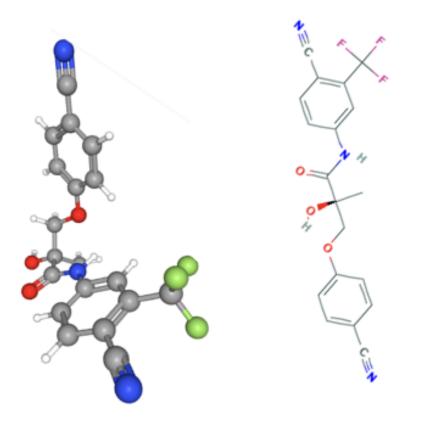
Selected trials targeting (blocking) AR in HR+ MBC

NCT number	Title	Arms	Ν	Clinical	outcome			
NCT 02910050 Phase II	inhihitara in	Bicalutamide + Al	58	SD: 3 p PD: 15	CBR (6 months): 16.7% SD: 3 pts (17%) PD: 15 pts (83%) PFS: 2.7 months (95% CI: 2.2–3.8 months)			
	Safety study of enzalutamide (MDV3100) in patients with MBC	Enzalutamid e ± AI/SERD	101	160 mg 160 mg 160 mg	MTD not yet reported. 160 mg enzalutamide: 22 patients, 3 AE 160 mg enzalutamide + 1 mg anastrozole: 20 patients, 1 AE 160 mg enzalutamide + 50 mg exemestane: 23 patients, 3 AEs 160 mg enzalutamide + 500 mg fulvestrant: 11 patients, 2 AEs			
NCT 02007512	Efficacy and safety study of e +Exemesta	ty study of e +Exemesta	+Exemesta	Withou t prior ET	Enzalutamide + Exemestane: PFS (ITT): 11.8 months (7.3–15.9) PFS (DX+): 16.5 months (11.0-NA) Exemestane: PFS (ITT): 5.8 months (3.5– 10.9); PFS (DX+): 4.3 months (1.9–10.9)	Enzalutamide + Exemestane: CBR 24 weeks: 62% (49–74%) best objective response rate: 31% (17–48%) Exemestane: CBR 24 weeks: 45% (33–58%); best objective response rate: 19% (9–34%)		
		247 ne	With prior ET	Enzalutamide + Exemestane: PFS (ITT): 3.6 months (1.9–5.5) PFS (DX+): 6.0 months (2.3–26.7) Exemestane: PFS (ITT): 3.9 months (2.6–5.4); PFS (DX+): 5.3 months (1.8–6.7)	Enzalutamide + Exemestane: CBR 24 weeks: 20% (11–32%); best objective response rate: 10% (3–23%) Exemestane: CBR 24 weeks: 32% (20–45%); best objective response rate: 5% (0.6–16%)			
NCT 01808040 Phase Ib	A Phase 1b study of TAK- 700 in postmenopausal women with HR+ MBC	Orteronel	8	MTD not yet reported. Dose level 1: 300 mg (4 pts, 1 not evaluated) Dose level 2: 400 mg (3 pts) 1 patient with SD > 6 months 1 patient with SD for 3 months				


VANDERBILT WUNIVERSITY MEDICAL CENTER

AR agonists as target for the treatment of HR+ MBC

MEDICAL CENTER


AR agonists inhibit HR+ BC growth (pre-clinical data)

Model depicting the AR-mediated inhibition of ER function associated with anti-tumor activity

¹Birrell et al, J Steroid Biochem Mol Biol 52:459-67, 1995 | ²Peters et al, Cancer Res 69: 6131-40, 2009 |³Hickey et al, Nature Medicine (In Press) | ⁴Moinfar et al, Cancer 98:703–11, 2003 |⁵Hu et al, Clin Cancer Res 17:1867–74, 2011 | ⁶Ricciardelli et al, VANDERBILT 💱 UNIVERSITY Clin Cancer Res 24:2328-41, 2018 |7Bronte et al, Transl Oncol 11: 950–956, 2018

Phase II trial of Enobosarm, a selective androgen receptor agonist, to target AR in women with advanced AR+/ER+ breast cancer

Chemical structure of Enobosarm

Enobosarm is a non-steroidal, selective androgen receptor agonist that inhibits AR+HR+ BC in cell lines/ PDX models of ET sensitive and resistant disease

- Not a substrate for aromatase
- Anabolic on muscle; builds and heals bone
- Selective tissue activity (non-virilizing, no liver tox, no polycythemia)
- Extensive nonclinical and clinical package as it as been evaluated in 27 clinical trials in a total of 2,159 subjects (348 subjects dosed at <u>></u> 9mg)

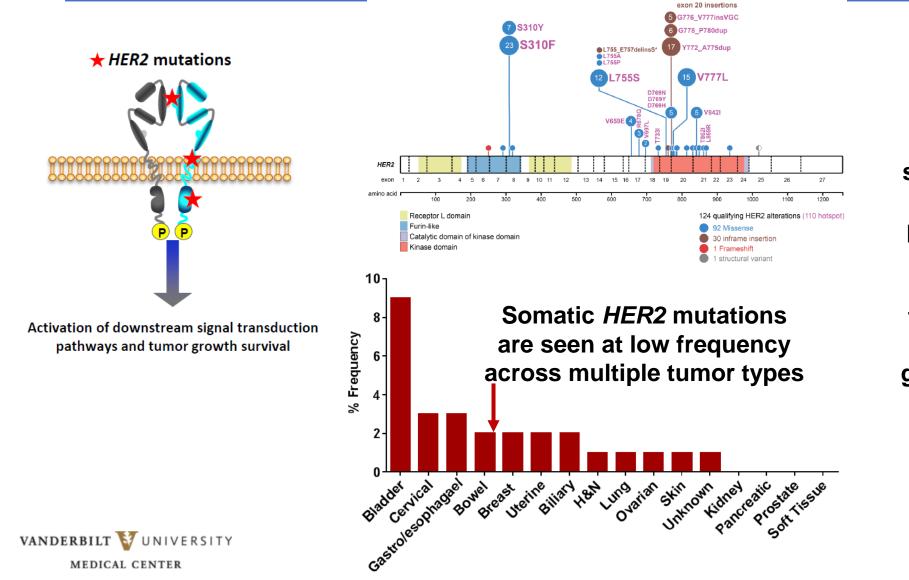
¹ Narayanan R et al. Mol Cell Endocrinol 2017|² Dalton JT et al. Curr Opin Support Palliat Care 7:345-351, 2013|³Kamrakova M et al Calcif Tissue Int 106:147-157,2020|⁴ Hoffman DB et al. J Bone Metaab 37:243-255, 2019|⁵ KearbeyJD et al Pharm Res 26:2471-2477, 2009| ⁶Dobs AS et al. Lancet Oncol 14:335-45, 2013|⁷Hickey et al., Nature Medicine, in press. ⁸Palmieri et al., SABCS 2020

Phase 2 (open label) clinical trial (G200802): aims to assess the efficacy (CBR 1 ^{ary} endpoint) and safety of Enobosarm 9 mg or 18 mg oral daily dose in a heavily pretreated population of AR+(> 10%)/ ER+ MBC patients who previously responded to endocrine treatment (adjuvant ET for \geq 3 years, or most recent ET for MBC \geq 6 months)	Enobosari ening RANDOMIZATION 1:1 Enobosari	Image: Constraint of the second system 72 Patients Evaluable Population (AR > 10%) 10% n=50 (9 mg) n=52 (18 mg)	
Demographics	9 mg cohort	18 mg cohort	
Age (median), years (range)	60.5 (35-83)	62.5 (42-81)	
Caucasian (%)	98.0	94.2	
ECOG 0/1 (%)	60.0/40.0	53.8/42.3	3
Median months since initial diagnosis (range)	110.0 (19-435)	86.0(15-323)	
Median months since metastatic diagnosis (range)	34.3 (1-167)	27.4 (1-225)	
Central AR primary/metastatic (%)	52/44	57.7/40.4	3 (
Median % of cells staining AR+ (range)	53.4 (11-96)	51.4 (14-98)	\mathbf{n}
AR status confirmed centrally (%)	94.0	86.5	
Bone only non-measurable (%)	38.0	32.7	
Prior chemotherapy (%)	90.0	92.3	
Median prior lines of endocrine therapy	3		
VANDERBILT VUNIVERSITY			

MEDICAL CENTER

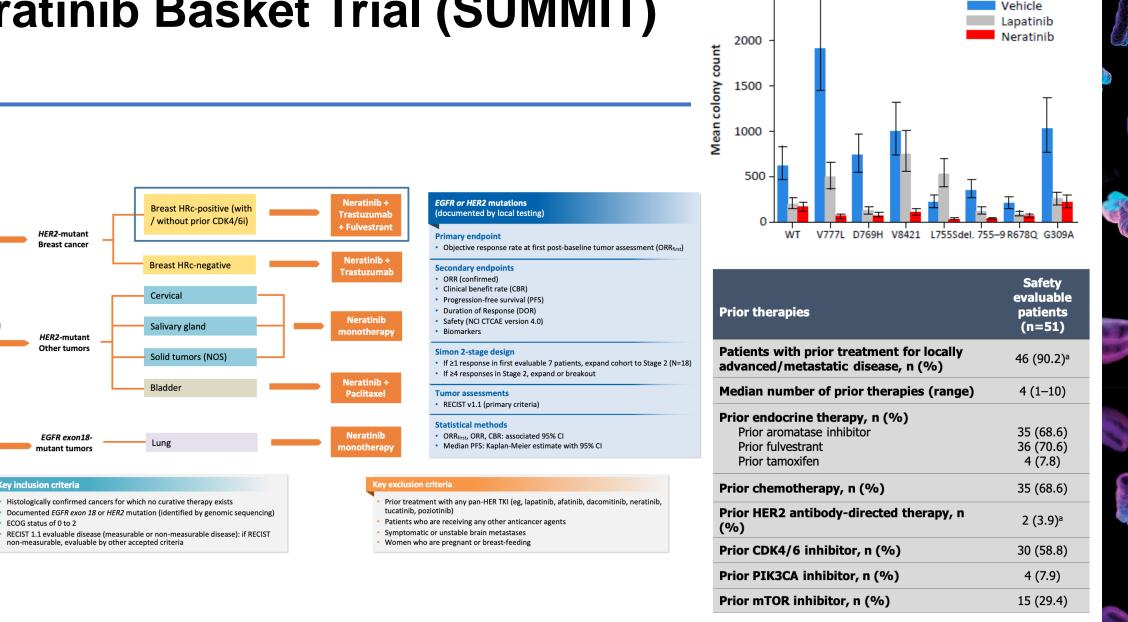
Anti-tumor efficacy: CBR

AR blockers or AR agonists for HR+ MBC??


- Targeting of the AR as a monotherapy or in combination with other conventional therapies are increasingly being investigated in breast cancer
- Novel AR agonists (monotherapy, e.g. enobosarm) have activity in heavily pre-treated (but ET sensitive) HR+ MBC
- But is "ET + AR blocker" >, < or = as "AR agonist +/- ET" in HR+ MBC?

Both strategies could work, as AR opposing actions could depend on clinical scenario and the multitude of proteins interacting with it in HR+ BC

ET-naïve patients with high AR mRNA levels, particularly in combination with low ESR1 mRNA levels, may benefit from AR blocker (e.g. enzalutamide) with ET (e.g. exemestane) (Krop et al CCR 2020) ET-heavily pre-treated patients, especially with high AR mRNA levels and *ESR1* mut, may benefit from an AR agonist (e.g. enobosarm) (Palmieri and Fuqua SABCS 2020)


MEDICAL CENTER

Targeting HER2 (ERBB2) Mutations

Activating HER2 mutations result in constitutive kinase signaling, activation of growth promoting/ survival pathways, oncogenic transformation and enhanced tumor growth in preclinical models

Neratinib Basket Trial (SUMMIT)

2500

VANDERBILT 🚺 UNIVERSITY MEDICAL CENTER

HER2-mutant

Breast cancer

HER2-mutant Other tumors

EGFR exon18-

mutant tumors

Kev inclusion criteria

ECOG status of 0 to 2

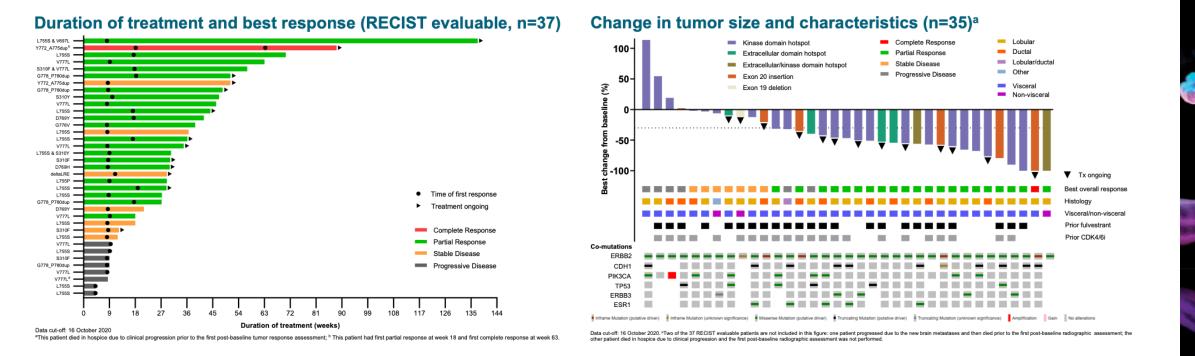
Breast HRc-negative

Cervical

Bladder

Lung

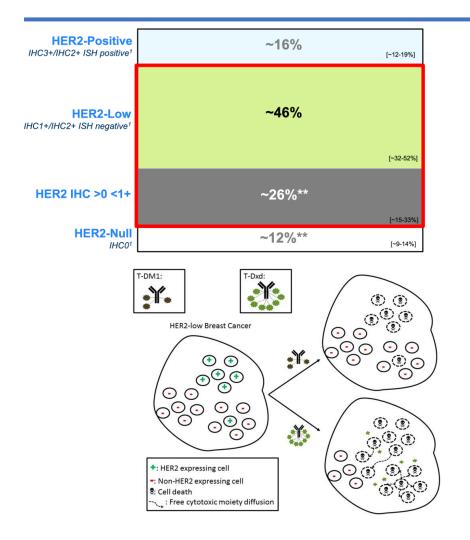
Histologically confirmed cancers for which no curative therapy exists


non-measurable, evaluable by other accepted criteria

Salivary gland

Solid tumors (NOS)

Hyman et al. Nature 2018; Jhaveri et al SABCS 2020


Neratinib Basket Trial (SUMMIT) Responses

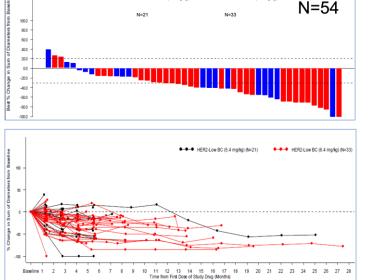
The combination of neratinib + fulvestrant + trastuzumab demonstrated encouraging clinical activity in heavily pretreated *HER2*-mutant, HR+, *HER2*-non-amplified MBC, including patients who had previously received either fulvestrant and/or CDK4/6 inhibitor-based therapies: **ORR 45.9%**; median DoR 10.9 months; **median PFS 8.3 months**

VANDERBILT WUNIVERSITY MEDICAL CENTER

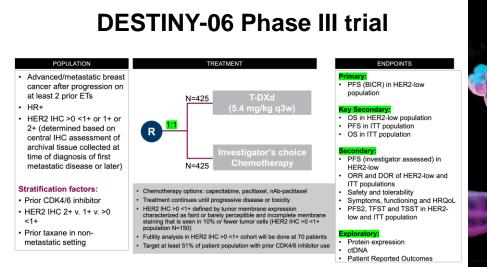
HER2-low HR+ breast cancer

Comparison of trastuzumab–emtansine (T-DM1) vs. trastuzumab– duocarmazine (SYD–986) vs. trastuzumab–deruxtecan (T-Dxd).

Antibody-Drug Conjugate	T-DM1	SYD-986	T-Dxd
HER2 targeting vehicle	Trastuzumab	Trastuzumab	Trastuzumab
Linker	Non-cleavable	Cleavable	Cleavable
Drug–antibody ratio	3.5:1	2.8:1	8:1
Cytotoxic moiety	Maytansine derivative	Seco-DUBA	Exatecan derivative
Cytotoxic moiety MoA	Antimicrotubule (mitotic poison)	Alkylating agent	Topoisomerase I inhibitor
Diffusible cytotoxic moiety?	×	×	~
Bystander killing effect?	×	~	×
Targets HER2-positive or homogenous tumors?	~	~	~
Targets HER2-low or heterogeneous tumors?	×	~	~

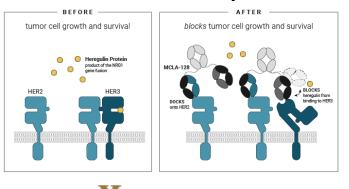

1. Trail, et al. Pharmacol Ther. V181 p126-142 (2018). 2. Marcoux et al. Protein Sci. v24 p1210-1223 (2015). 3. Nakada et al. Chem Pharm Bull (Tokyo). 2019;67(3):173-185. 4. Ogitani Y, et al. *Clin Cancer Res.* 2016;22(20):5097-5108. 5. Ogitani Y, et al. *Cancer Sci.* 2016;107(7):1039-1046 6. Eiger D, et al. Cancers 2021 7. Iwata et al. J Clin Oncol 2018

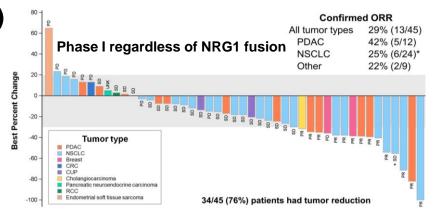
Antibody-conjugates and bi-specific Abs in HER2-low tumors


HER2-Low BC (5.4 mg/kg

Trastuzumab deruxtecan J-101 Phase I trial

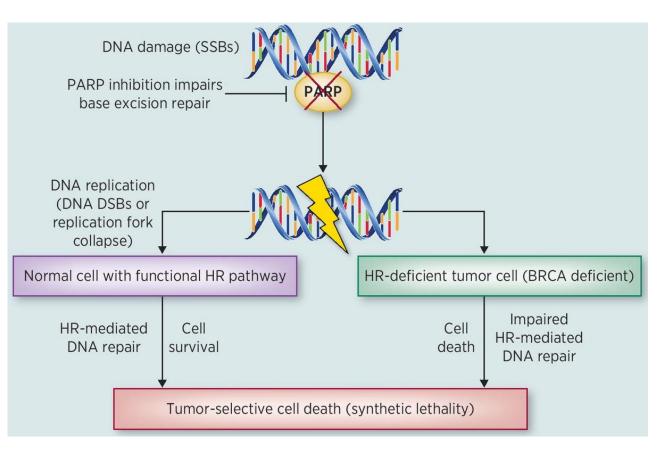
Subgroup	ORR by BICR (all doses)	mDoR	mPFS
HR+ (n = 47)	40.4%	10.4m (-,-)	13.4m (-,-)
IHC 2+ (n = 26)*	38.5%	-	13.4m (-,-)
IHC 1+ (n = 28)*	35.7%	8.8m (-,-)	7.6m (-,-)
Prior CDK4/6i (n = 16)	43.8%	-	10.2m (-,-)
0	OCO: Feb 2019		

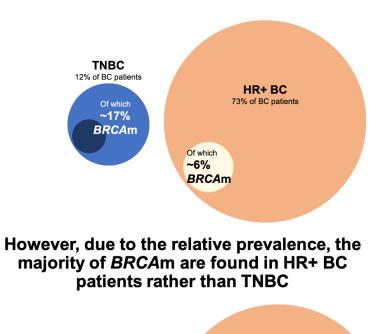

HER2-Low BC (6.4 mg/kg

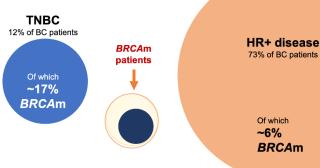

Zenocutuzumab (MCLA-128)

response) included in waterfall/spider plots

*Note: n=7 HR(-) patients included within IHC2+/1+ (1

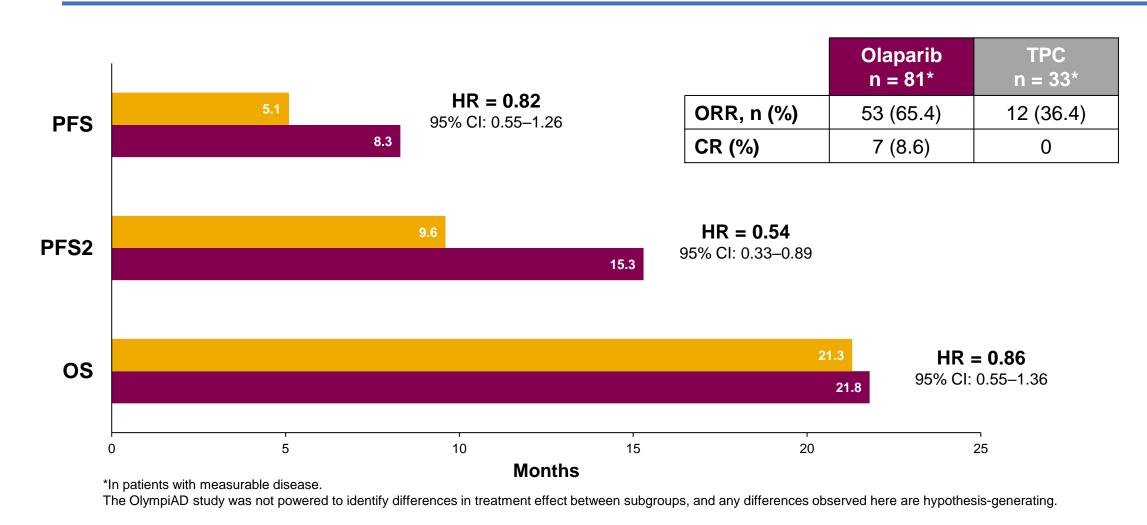



Phase II trial in HR+, HER2 low (IHC 1+/IHC 2+ with negative FISH) MBC, who had progressed on a CDK4/6i and up to 3 lines of ET, with ≤ 2 chemotherapy regimens in the metastatic setting (N=48): DCR was 45% (90% CI 32-59) with 2 pts having unconfirmed PR and 19 pts SD


Iwata et al. J Clin Oncol 2018; Geuijen et al. Cancer Cell 2018; Pistilli et al. ASCO2020; Schram et al. ASCO2021

Targeting BRCA Mutations in HR+ MBC

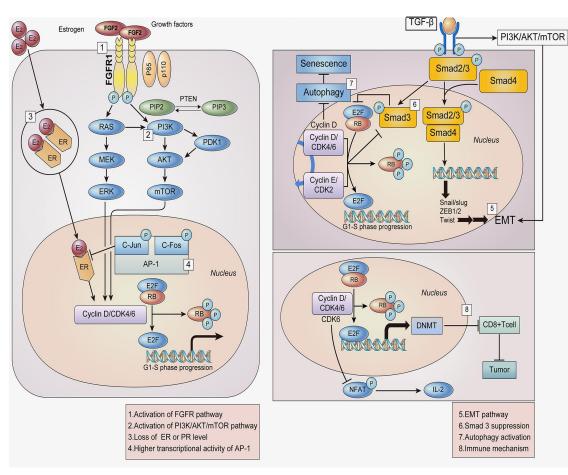
A higher proportion of TNBC patients have BRCAm than HR+ BC patients



Winter C, et al. Ann Oncol 2016

VANDERBILT 💱 UNIVERSITY

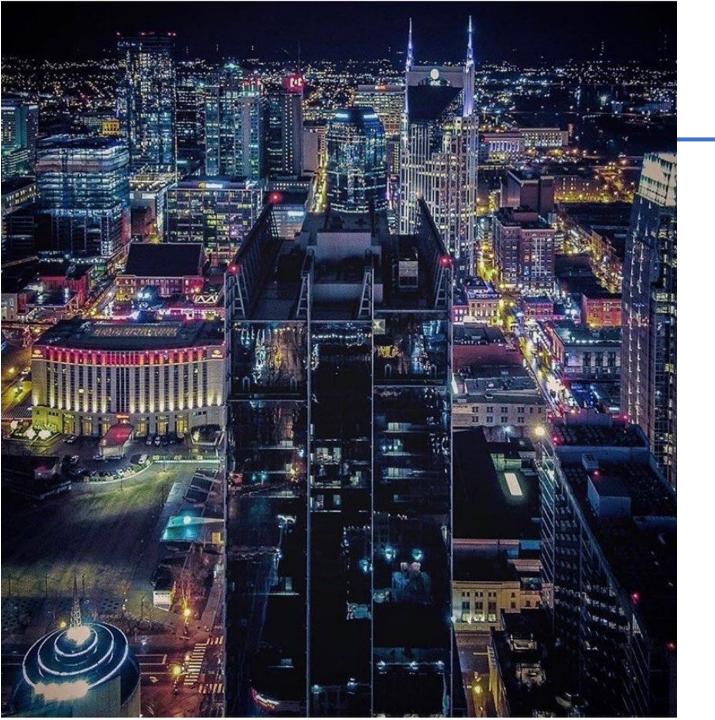
MEDICAL CENTER


OlympiAD: PFS and OS in HR+ MBC

VANDERBILT VUNIVERSITY MEDICAL CENTER

Senkus, et al. *EBCC 2018.* Poster PB-002; Robson M, et al. *Ann Oncol* 2019

Novel therapeutic options in HR+ BC: where are we going?



BRCA mutations - PARP inhibitors **ESR1** mutations - Novel SERDs, SERCAs HER2 mutations - Neratinib + ET AR overexpression - AR blockers/agonists + ET HER2-low – T-deruxtecan CDK2/7/9 inhibitors + ET? FGFR inhibitors + ET?

AuroraK inhibitors + ET?

BCL2 inhibitors + ET?

Funding Support

STAND UP TO CANCER

QUESTIONS?