

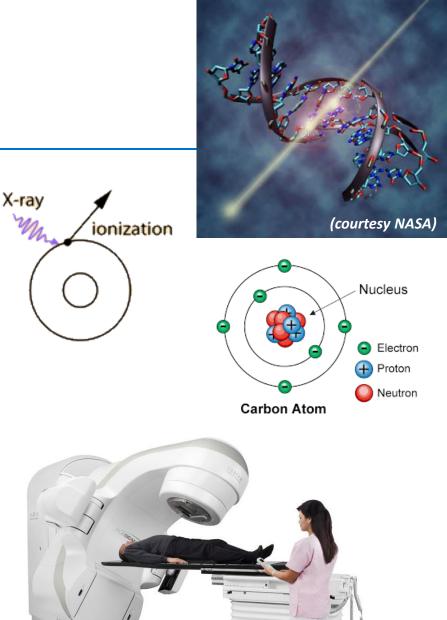
MOVING THE NEEDLE FORWARD IN LUNG CANCER WITH RADIATION: COMBINATIONS WITH TARGETED THERAPIES

TERENCE WILLIAMS, MD, PHD

Chair and Professor, Department of Radiation Oncology Adjunct Professor, Department of Cancer Genetics and Epigenetics City of Hope National Medical Center

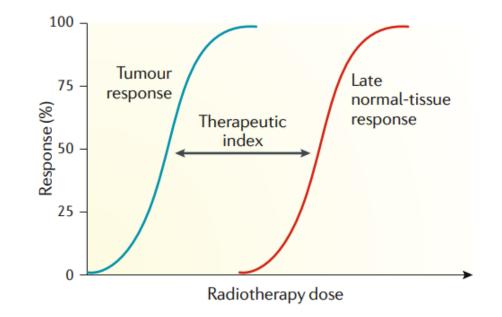
- Consulting/Advisory Board: Novocure, Accuray, January Therapeutics, Candel Therapeutics
- Research Funding: National Institutes of Health, American Cancer Society

Outline



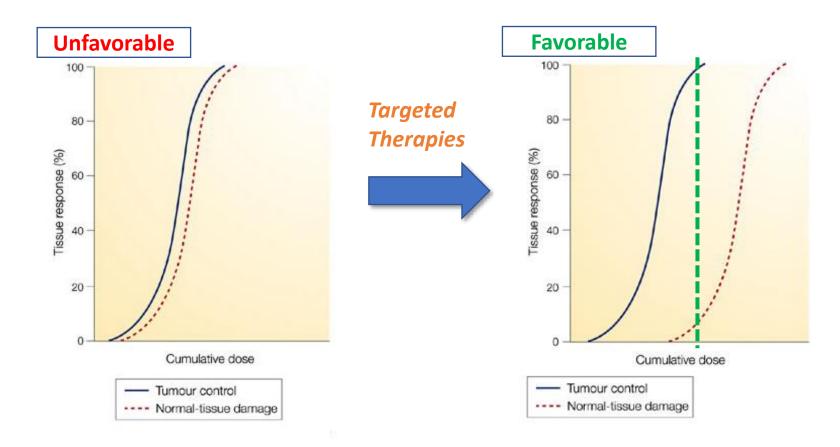
- 1. Radiation Therapy and the Therapeutic Index
- 2. Locally-advanced NSCLC
- 3. Early-stage NSCLC
- 4. Stage IV NSCLC (oligometastatic)

5. SCLC



- The most common prescribed single therapeutic agent for cancer treatment (~50-60% of cancer patients receive it at one point)
- Ionizing photons or charged particles
- 100-1,000x more energy than radiation used in Xrays or CT scans
- Target is typically DNA in cells (e.g. double-strand breaks)
- Most commonly delivered as external beam radiation
- Curative as a single modality modality or in combination with surgery or systemic therapies (e.g. chemotherapy, immunotherapy, etc.)

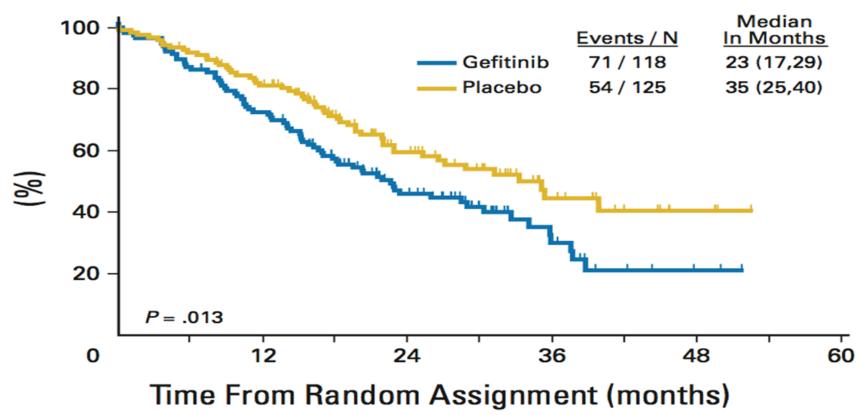
Therapeutic Index of Radiotherapy


- Ratio between the effects on tumor tissue versus the effects on normal tissues (organs at risk)
- Index is favorable if response of tumor tissue is greater than the surrounding normal tissue
- Therapeutic index can be increased by biological or physical methods
 - **Physical**: improved tumor targeting
 - Biological: fractionation, radioprotectors, biomarkers to select dose escalation/de-escalation, <u>tumor-</u> <u>specific radiosensitizers or modifiers</u>

De Ruysscher et al., Nature Reviews, 2019, 5:13.

Enhancing Radiation Therapeutic Index with Tumor-Targeted Therapies

 Identify therapeutic agents which widen the therapeutic index with radiation, by selectively killing tumor cells while minimizing normal tissue toxicity.



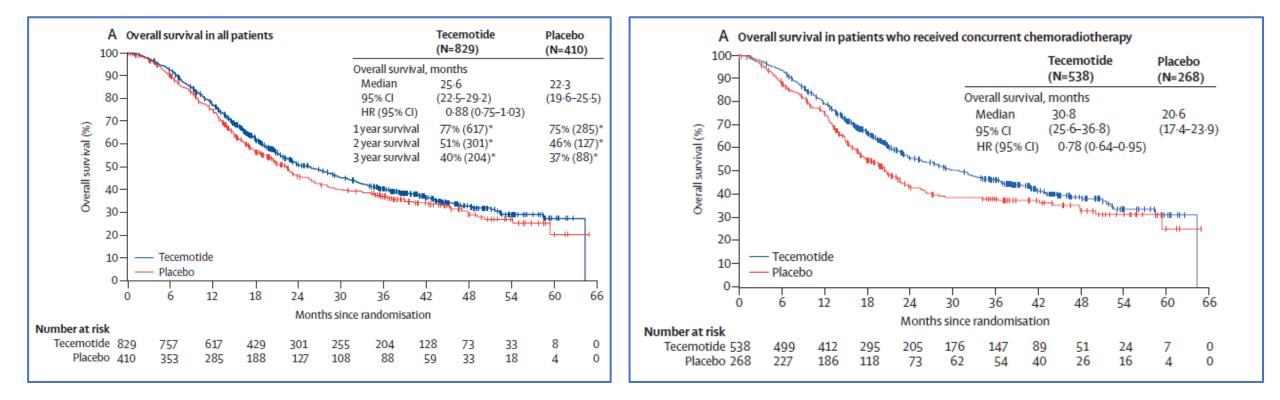
LOCALLY-ADVANCED NSCLC

Failures of Targeted Therapies – Example 1 (Gefitinib)

(Maintenance gefitinib in unselected patients)

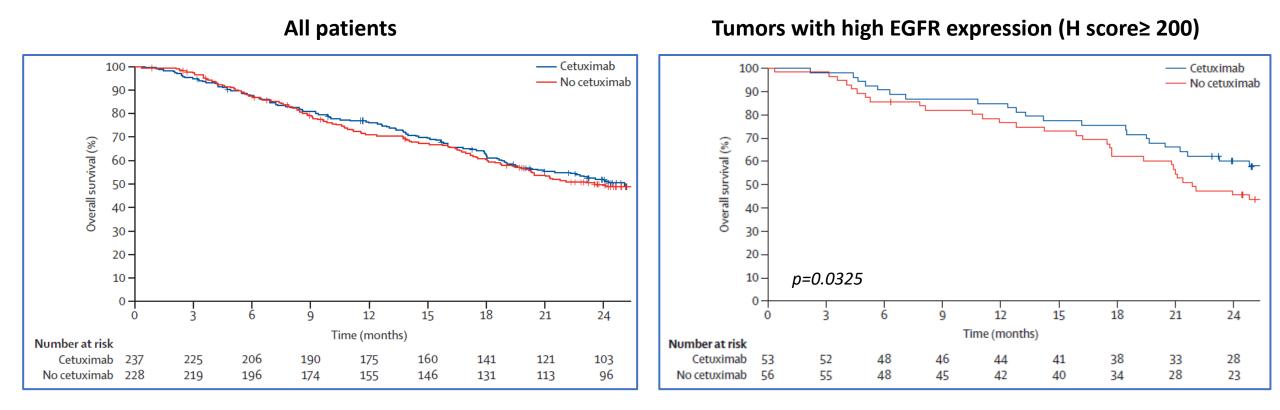
SWOG 0023 - EGFR TKI after chemo/RT

犹 Cityof Hope.


K Kelly, et al., JCO, 2008

Failures of Targeted Therapies – Example 2 (Bevacizumab)

Trial/Institution	Regimen	Status
Ca Consortium (IIIB/IV)	$RT \rightarrow CP/Bev$	Closed - 1 gr 5 hemorrhage
Northwestern (IIIB/IV)	$RT \rightarrow CP/Bev$	Never Opened
Dana Farber	CP wkly + Bev q3 wk + RT \rightarrow CP/Bev q3 wk \rightarrow Bev x 1 yr	Closed 4 pt – 1 gr 5 hemorrhage, 1 PE
NCI 7213 (Vokes)	C/P/Bev/RT	Closed; 1 pt accrued
Sarah Cannon (Spigel)	Carbo/Pem/ <mark>Bev</mark> /RT → Carbo/Pem/ <mark>Bev</mark> → Bev	Closed – 5 pt – 2 TE fistulas
UNC (Socinski)	$\frac{CP/Bev \rightarrow CP/Bev/RT \rightarrow}{Bev/Erlotinib}$	After 21 pt – 1 gr 5 and 1 gr 3 hemorrhage

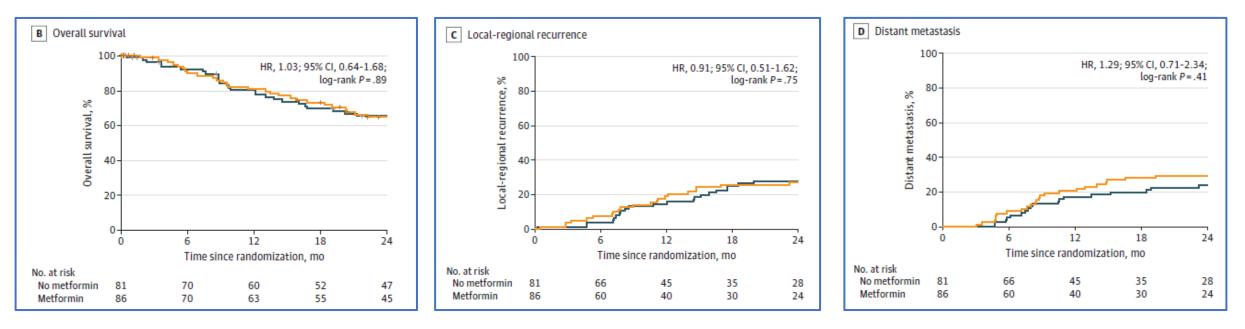

Failures of Targeted Therapies – Example 3 (Tecemotide)

START trial: Maintenance Tecemotide/L-BLP25 (MUC1-targeted liposomal peptide vaccine)

Failures of Targeted Therapies- Example 4 (Cetuximab)

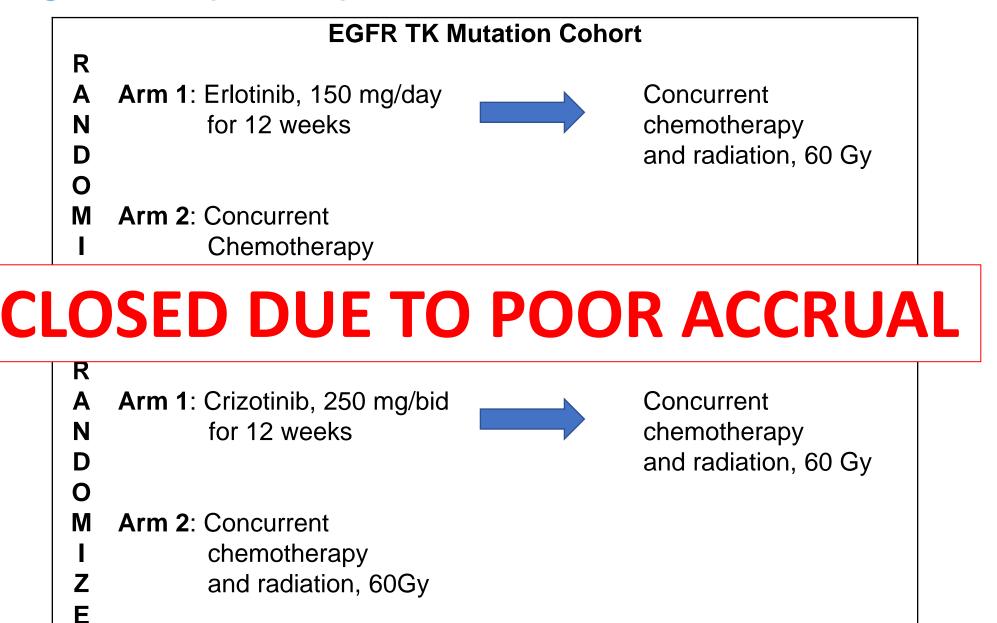
RTOG 0617: Cetuximab vs. no Cetuximab

🛣 Cityof Hope.


J Bradley, et al., Lancet Oncol, 2015

Failures of Targeted Therapies – Example 5 (Metformin)

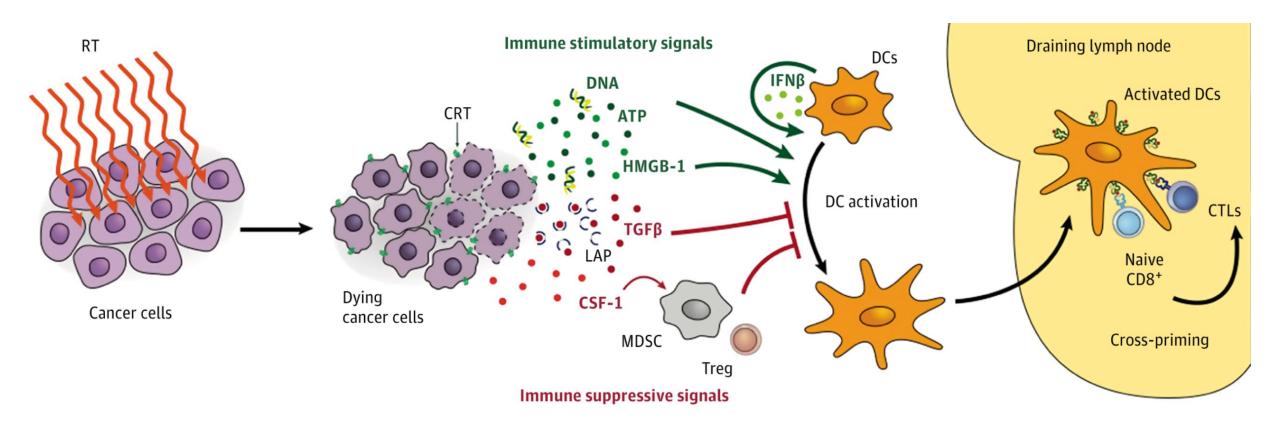
JAMA Oncology | Original Investigation


X City of Hope.

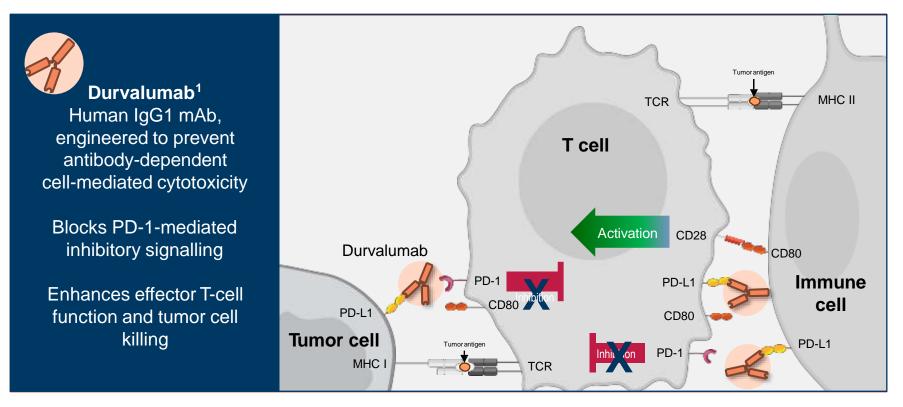
Addition of Metformin to Concurrent Chemoradiation in Patients With Locally Advanced Non-Small Cell Lung Cancer The NRG-LUOO1 Phase 2 Randomized Clinical Trial

H Skinner, et al., JAMA Onc, 2021

Individualized Combined Modality Therapy for Stage III Non-small Cell Lung Cancer (NSCLC) - RTOG 1306/Alliance 31101



THEN CAME IMMUNOTHERAPY....

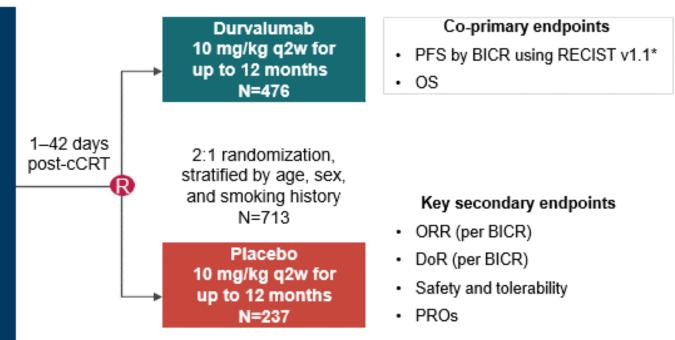


Role of Local Radiation Therapy in Cancer Immunotherapy

🛣 Cityof Hope.

Durvalumab Blocks PD-L1 Binding to PD-1

mAb, monoclonal antibody; MHC, major histocompatibility complex; PD-1, programmed cell dealth-1; PD-L1, programmed cell death ligand-1; TCR, T-cell receptor Stewart R, et al. Cancer Immunol Res 2015;3:1052-62


🛣 Cityof Hope.

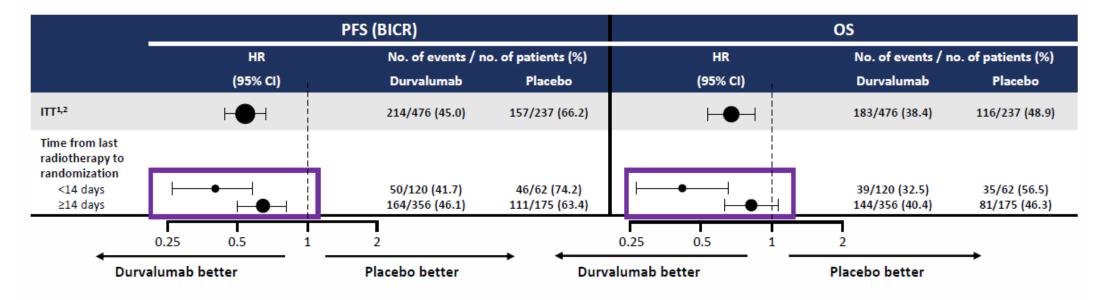
PACIFIC: Study Design

Phase III, Randomized, Double-blind, Placebo-controlled, Multicenter, International Study

- Patients with stage III, locally advanced, unresectable NSCLC who have not progressed following definitive platinum-based cCRT (≥2 cycles)
- · 18 years or older
- WHO PS score 0 or 1
- Estimated life expectancy of ≥12 weeks
- Archived tissue was collected

All-comers population

Durvalumab Blocks PD-L1 Binding to PD-1


OS* PFS (BICR) Median OS (95% CI) Median PFS (95% CI) months months 1.0 -1.0 **Durvalumab** 16.8 (13.0-18.1) **Durvalumab** NR (34.7–NR) 83.1% 0.9 0.9 Placebo 5.6 (4.6-7.8) Placebo 28.7 (22.9-NR) 0.8 0.8-66.3% 0.7 0.7 **Probability of PFS Probability of OS** 75.3% 55.9% 0.6 0.6-14.2% 0.5 -0.5-55.6% 0.4 0.4-.0% 0.3 -0.3-PFS HR = 0.52 OS HR = 0.68 0.2 -0.2 99.73% CI, 0.469-0.997⁺ 95% CI, 0.42-0.65 0.1 -0.1-P<0.001 P=0.0025 0.0-0.0 0 15 18 21 24 27 3 12 12 15 18 21 24 27 30 33 36 39 42 45 6 q 0 9 Time from randomization (months) Time from Randomization (months) No. at risk No. at Risk 464 431 415 385 364 343 319 274 210 115 Durvalumab Durvalumab 57 0 0 476 377 220 198 178 170 155 141 130 117 78 42 Placebo 237 Placebo 0 163 237 21 106

> *Median duration of follow-up was 25.2 months (range 0.2–43.1); †Adjusted for interim analysis; NR, not reached. Note: PFS data based on data cutoff of Feb 13, 2017, and OS data based on data cutoff of Mar 22, 2018.

1. Antonia SJ, et al. N Engl J Med 2017;377:1919–29; 2. Antonia SJ, et al. N Engl J Med 2018; Epub Sep 25.

犹 City₀f Hope.

Impact of Time from Prior RT to Randomization

	_	TTDM (BICR)		ORR (BICR)	
	HR	No. of events / no. of patients (%)		%	
	(95% CI)	Durvalumab	Placebo	Durvalumab	Placebo
ITT ¹	0.52 (0.39, 0.69)	131/476 (27.5)	98/237 (41.4)	28.4	16.0
Time from last radiotherap to randomization	у	-			
<14 days ≥14 days	0.33 (0.20–0.55) 0.70 (0.51–0.95)	30/120 (25.0) 101/356 (28.4)	34/62 (54.8) 64/175 (36.6)	34.2 26.5	16.4 15.8

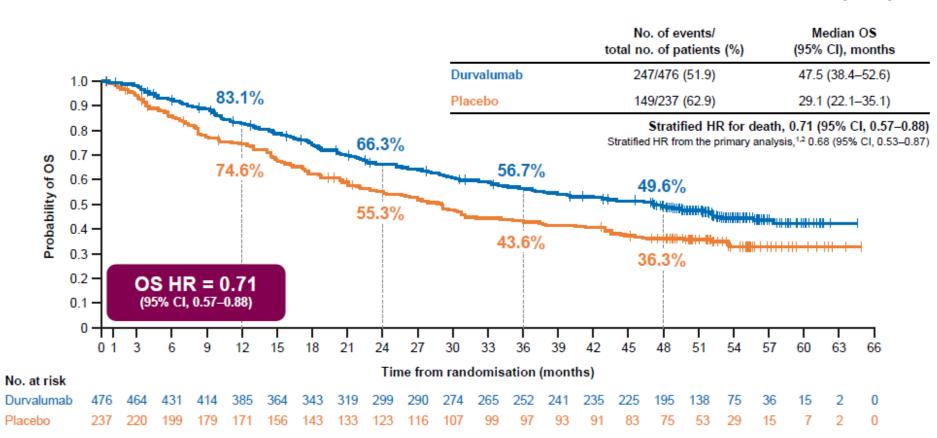
*Not calculated if subgroup has <20 events; NA, not available.

Note: PFS, TTDM, and ORR data based on data cutoff of Feb 13, 2017, and OS data based on data cutoff of Mar 22, 2018

Antonia SJ, et al. N Engl J Med 2017;377:1919–29;
 Antonia SJ, et al. N Engl J Med 2018; Epub Sep 25.

Similar Toxicity Profiles Regardless of Time from Prior RT to Randomization

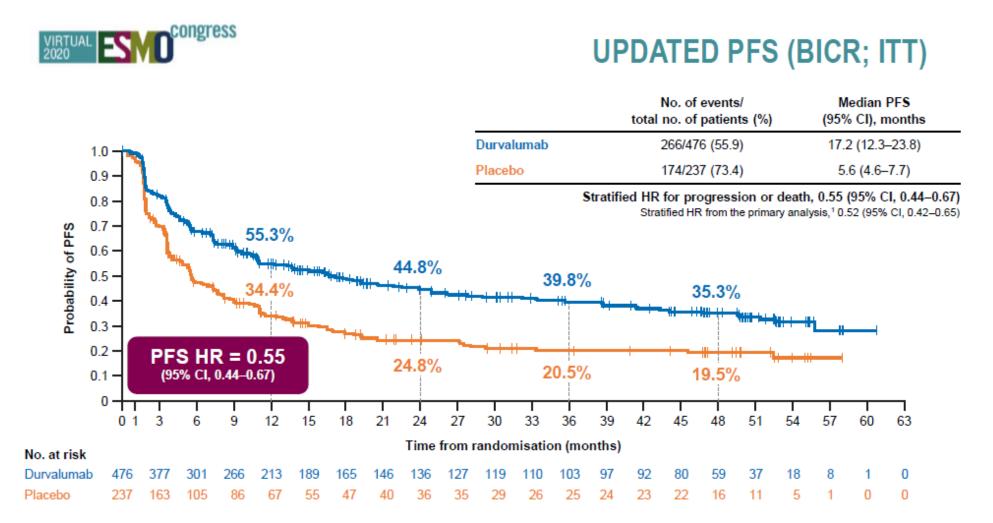
	<14 days		≥14 days	
	Durvalumab (N=120)	Placebo (N=60)	Durvalumab (N=355)	Placebo (N=174)
Any-grade all-causality AEs, n (%)	118 (98.3)	57 (95.0)	342 (96.3)	165 (94.8)
Grade 3/4	37 <mark>(</mark> 30.8)	18 (30.0)	108 (30.4)	43 (24.7)
Outcome of death	<mark>6 (</mark> 5.0)	7 (11.7)	15 (4.2)	8 (4.6)
Leading to discontinuation	16 <mark>(</mark> 13.3)	9 (15.0)	57 (16.1)	14 (8.0)
Serious AEs, n (%)	36 (30.0)	20 (33.3)	102 (28.7)	34 (19.5)
Any-grade pneumonitis/radiation pneumonitis, n (%)	47 <mark>(</mark> 39.2)	10 (16.7)	114 (32.1)	48 (27.6)
Grade 3/4	5 (4.2)	1 (1.7)	12 (3.4)	5 (2.9)
Outcome of death	0	2 (3.3)	5 (1.4)	3 (1.7)


Note: Data based on data cutoff of Mar 22, 2018.

Patients with multiple AEs are counted once at the maximum reported CTCAE grade.

PACIFIC: 4 yr Survival Update

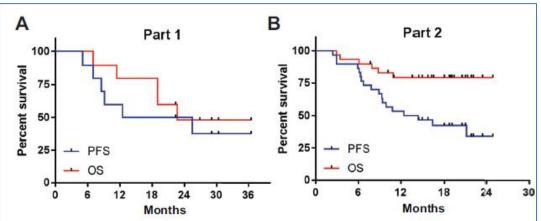
congress


UPDATED OS (ITT)

🛣 Cityof Hope.

C Faivre-Finn, et al., ESMO and JTO, 2020

PACIFIC: 4 yr Survival Update

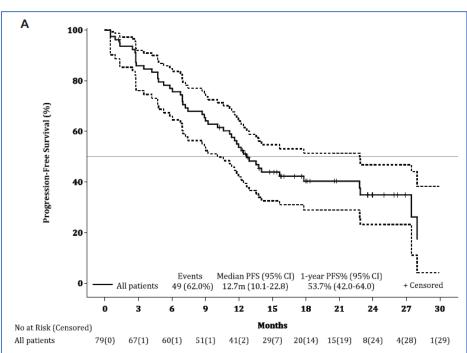


犹 Cityof Hope.

C Faivre-Finn, et al., ESMO and JTO, 2020

DETERRED: Phase II Concurrent Atezolizumab with Chemoradiation for Unresectable NSCLC

- Part 1 (n=10): CRT followed by consolidation chemo and maintenance atezolizumab (median f/u 22.5 mo)
- Part 2 (n=30): concurrent CRT with atezolizumab followed by same consolidation chemo and maintenance atezolizumab (median f/u 15.1 mo)
- Median PFS:
 - Part 1= 18.6 months Part 2= 13.2 months
- Median OS:
 - Part 1= 22.8 months Part 2= not reached

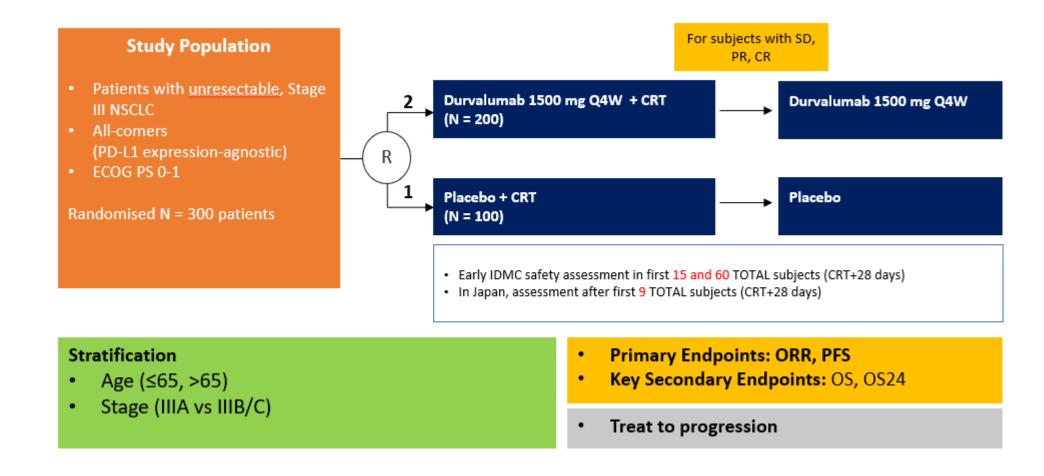

- Toxicity: 80% of patients experienced at least 1 grade 3+ adverse event
 - Part 2= 20% grade 3+ immune-related toxicity; 20% treatment discontinuation
 - $\circ~$ No immune-related grade 5 toxicities

NICOLAS Trial: Phase II Concurrent Nivolumab with Chemoradiation for Unresectable NSCLC

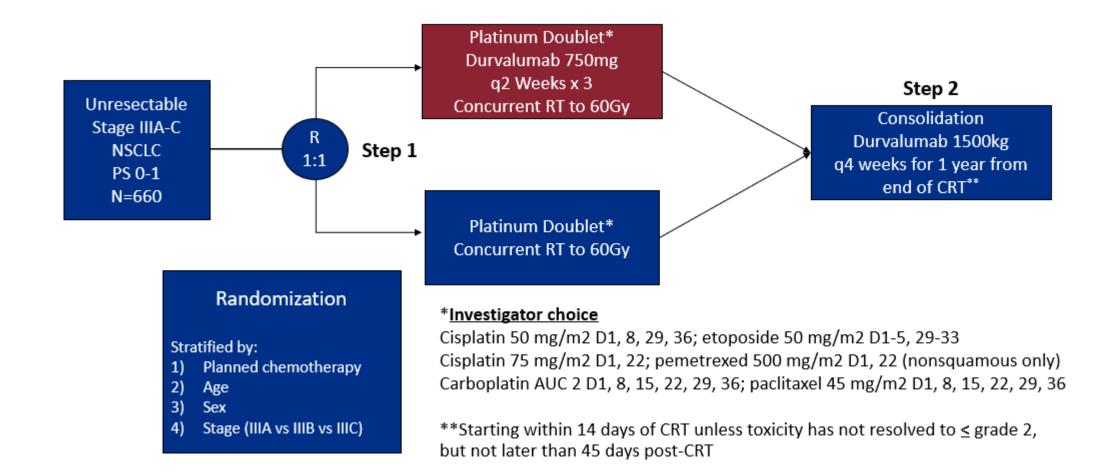
- 79 patients with concurrent cisplatin-based chemoradiation with concurrent nivolumab, followed by nivolumab maintenance
- Median PFS (median f/u 21.0 mos)= 12.7 months
- Median OS (median f/u 32.6 mos)= 38.8 months

Table 2. Treatment-Related AEs (Safety Cohort; $N = 77$)			
Information on Treatment-Related AEs	Radiotherapy	Nivolumab	
Safety cohort: number of patients	77	76	
Any AE (SAE)	780 (61)	
Treatment-related AEs (SAEs)	168 (14)	249 (26)	
Treatment-related AEs (SAEs) grade 3-5	32 (9)	44 (18)	
Treatment-related AEs (SAEs) leading to death	2 (1)	7 (6)	
Treatment-related AEs (SAEs) leading to permanent discontinuation of treatment	6 (-)	16 (-)	

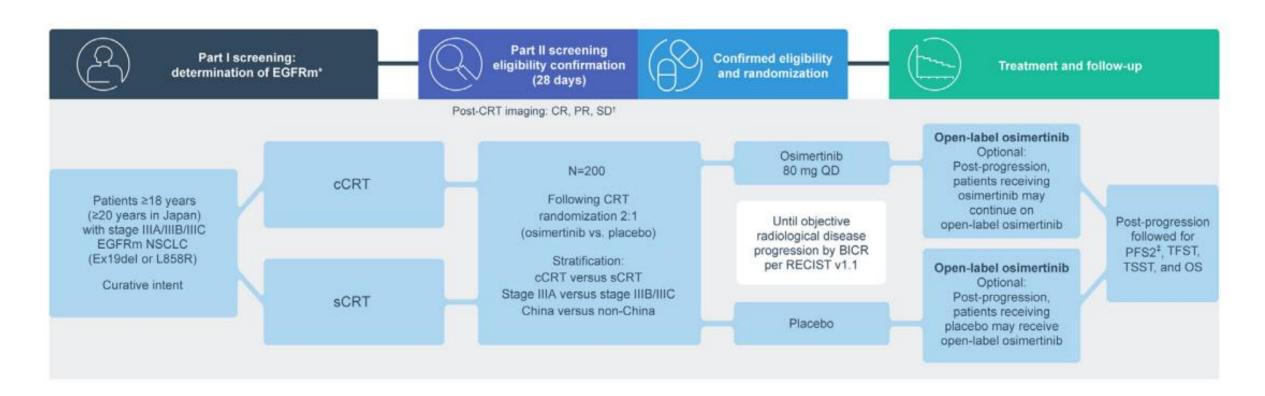
AE, adverse event; SAE, severe adverse event.



KEYNOTE-799: Phase II Concurrent Nivolumab with Chemoradiation for Unresectable NSCLC


- Cohort A: 1 cycle of induction chemo + pembro → CRT +pembro; chemo was carboplatin/paclitaxel
- Cohort B: 1 cycle of inuction chemo + pembro → CRT + pembro; chemo was cisplatin/pemetrexed
- 112 patients cohort A, 102 patients in cohort B
- ORR: ~70% in both cohorts
- Gr3-5 treatment-related AEs occurred in 50-64%
- Gr3+ pneumonitis 7-8%
- Conclusions: promising activity and manageable toxicity

- PACIFIC-2: Durvalumab + CRT → Durva vs. CRT
- EA 5181: Durvalumab + CRT→ Durva vs. PACIFIC regimen
- Checkmate 73L: Nivo + CRT→ Nivo + Ipi (or Nivo + CRT→ Nivo) vs. PACIFIC regimen
- LAURA: Osimertinib Maintenance (or placebo) After Definitive Chemoradiation in Patients with Unresectable EGFRm-Positive Stage III NSCLC


Ongoing Phase III Studies: PACIFIC-2

Ongoing Phase III Studies: EA 5181

Ongoing Phase III Studies: LAURA

S Lu, et al., Clin Lung Cancer, 2021

🛣 Cityof Hope.

EARLY STAGE NSCLC

🛣 City₀f Hope。

SURGERY VERSUS SBRT

VS

🛣 City₀f Hope。

Randomized Trials Comparing SBRT versus Surgery for Early Stage, Operable NSCLC

ROSEL (Netherlands/EORTC)

- Stage IA
- Randomized to Lobectomy versus 3-5 fraction SBRT (20 Gy x 3 or 12 Gy x 5)
- o Closed due to poor accrual

STARS Trial (US multi-institutional, MD Anderson)

- Randomized to surgery versus Cyberknife (60 Gy in 3-4 fx)
- $\circ~$ Closed due to poor accrual

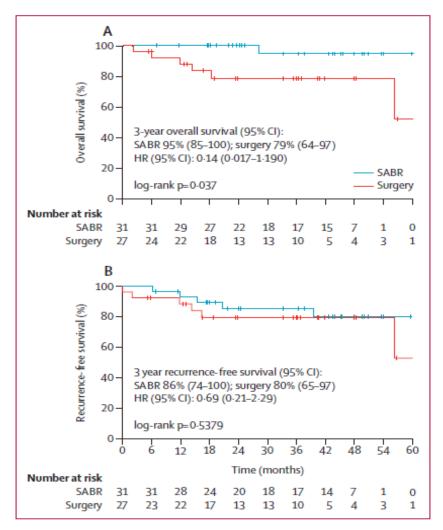
RTOG 1021/ACOSOG Z4099 (U.S.)

- Phase III Study of Sublobar Resection (+/- Brachytherapy) versus Stereotactic Body Radiation Therapy in High Risk Patients with Stage I Non-Small Cell Lung Cancer (NSCLC)
- Accrual goal 400 patients
- Closed due to poor accrual
- Many retrospective studies supporting equipoise between SBRT and Surgery (especially wedge or sublobar resection)...

High-risk operable patients have similar 3 yr survival rates whether receiving surgery or SBRT

SAbR Data	Stage	3-Year Survival	
SAbR- Dutch [7]	T1-T2N0	85%	Lagerwaard et al., IJROBP, 83(1), 348-35. (2012)
SAbR-Japan(JCOG 0403) [8]	T1N0	76%	Nagata et al., IJROBP, 78(3), S27-28 (2010)
SAbR-Japan [9]	T1-T2N0	86%	Uematsu et al., IJROBP, 51(3), 666-670 (2001)
SAbR-Japan [10]	T1-T2N0	80%	Onishi et al., IJROBP, 81(5), 1352-1358 (2011)
SAbR-Dutch [6]	T1-T2N0	80%	Verstegen et al., Annals of Onc, 24(6),
RTOG 0618	T1-T3N0	77%	1543-48 (2013)
Randomized Sublobar Data			
ACOSOG -Z4032 [4]	T1N0	71%	<i>Fernando et al., JCO, 32(23), 2456-62</i> (2014)
			Birdas et al., Ann of Thor Surg, 81(2), 434-38 (2006)
Non-Randomized Sublobar Data [11-13]	T1-T2N0	60-80%	Fernando et al., J Thor & CV Surg, 129(2), 261-67 (2005)
Timmerman Fernando et al Stabl	'amata's protos		Santos et al., Surgery, 134(4), 691-97 (2003)

Cityof Hope. Timmerman, Fernando et al., Stablemate's protocol


Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials

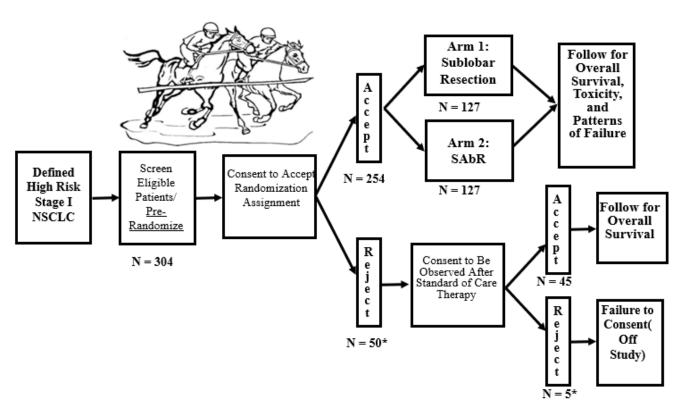
Joe Y Chang*, Suresh Senan*, Marinus A Paul, Reza J Mehran, Alexander V Louie, Peter Balter, Harry J M Groen, Stephen E McRae, Joachim Widder, Lei Feng, Ben E E M van den Borne, Mark F Munsell, Coen Hurkmans, Donald A Berry, Erik van Werkhoven, John J Kresl, Anne-Marie Dingemans, Omar Dawood, Cornelis J A Haasbeek, Larry S Carpenter, Katrien De Jaeger, Ritsuko Komaki, Ben J Slotman, Egbert F Smit†, Jack A Roth†

- Pooled analysis of STARS and ROSEL trials
- cT1-2a (<4 cm)N0M0 NSCLC, operable
- Randomized 1:1 to SABR vs lobectomy + mediastinal LND
- 58 patients (31 SABR, 27 surgery)
- Median follow-up: 40.2 months (SABR) and 35.4 months (surgery)

Results (STARS and ROSEL pooled analysis)

- 3 yr overall survival (estimated): 95%
 SABR vs. 79% surgery (p=0.037)
- 3 yr RFS : 86% SABR vs. 80% surgery (p = NS)
- Toxicity
 - SABR: grade 3= 10%, grade 4= 0%, grade 5= 0%
 - Surgery: grade 3-4= <u>44%</u>, grade 5= <u>4%</u>

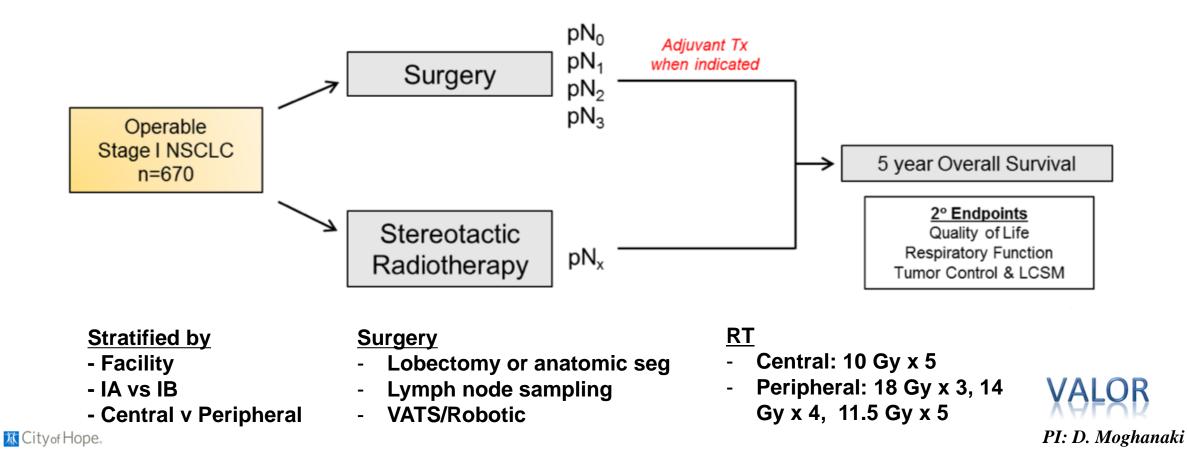
Chang, Senan et al., Lancet Oncol 2015


Cityof Hope.

The **STABLEMATES** Trial

(formerly RTOG 1021/ACOSOG Z4099)

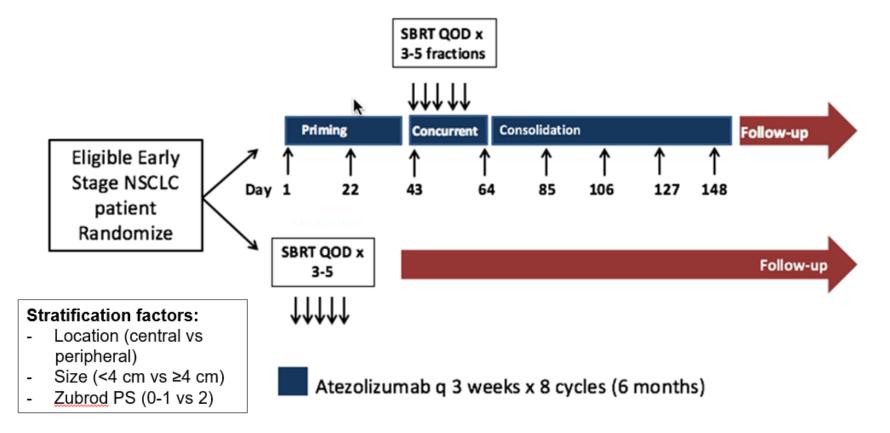
A Randomized Phase III Study of <u>Sublobar Resection (SR) versus</u> <u>Stereotactic Ablative Radiotherapy (SAbR) in High Risk Patients</u> with Stage I Non-Small Cell Lung Cancer (NSCLC)



VALOR Trial

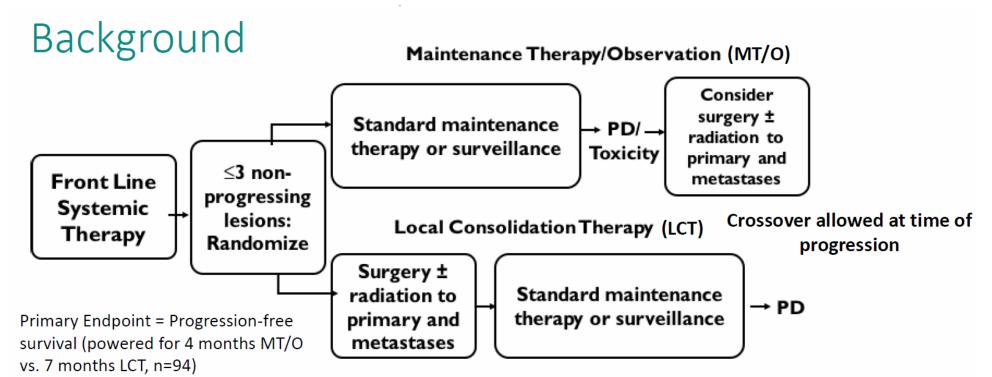
Veterans Administration Lung cancer surgery Or stereotactic Radiotherapy Trial

A Department of Veterans Affairs Cooperative Study - CSP #2005



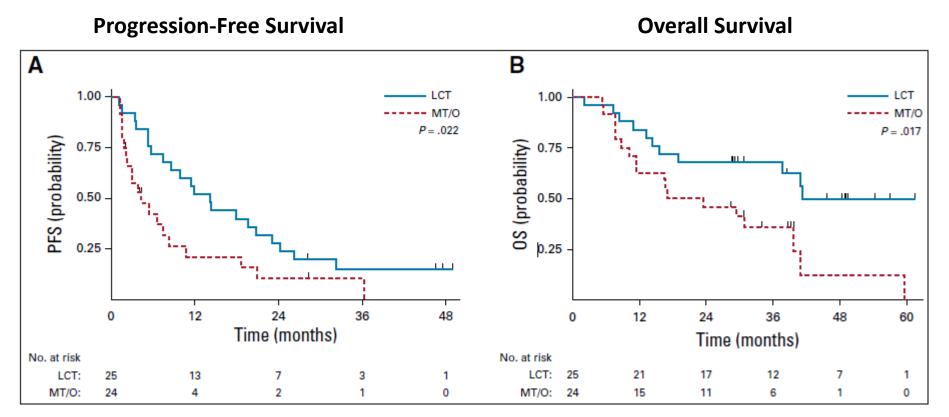
Ongoing Phase 3 Trials

- PACIFIC-4: SBRT vs durvalumab after SBRT (1500 mg durva q4 wks)
- NRG/SWOG S1914: SBRT vs atezolizumab before/during/after SBRT


STAGE IV NSCLC

ROLE OF RADIATION BECOMING INCREASINGLY IMPORTANT IN STAGE IV DISEASE

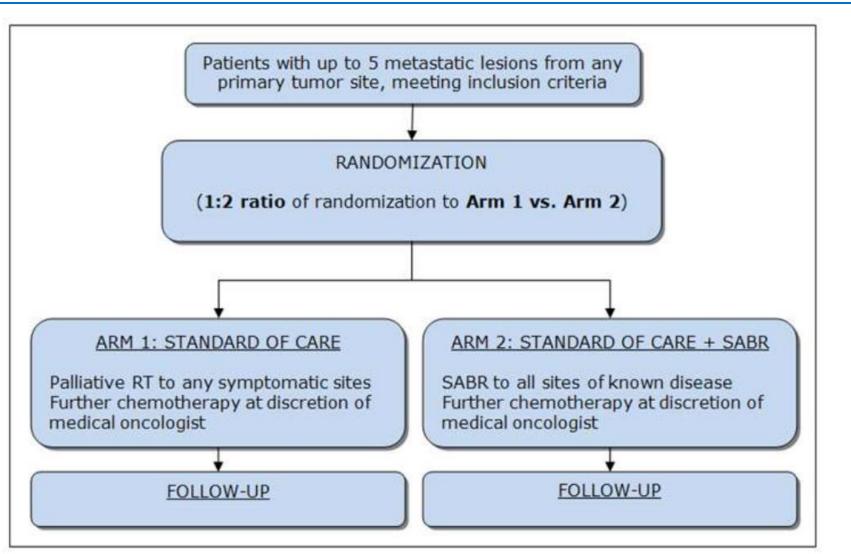
Local Consolidative Therapy for Oligometastatic NSCLC


Randomized phase II trial

Secondary Endpoints: Overall survival, safety/toxicity, time to appearance of new lesions Balanced randomization: 1) Number of metastases (0-1 vs. 2-3), 2) Response to first-line systemic therapy (stable disease vs. partial response), 3) N0-N1 vs. N2-N3, 4) CNS vs. no CNS metastases, 5) EGFR/ALK alteration vs. wild type

Oligometastatic NSCLC

DSMB recommended early closure after 49 patients

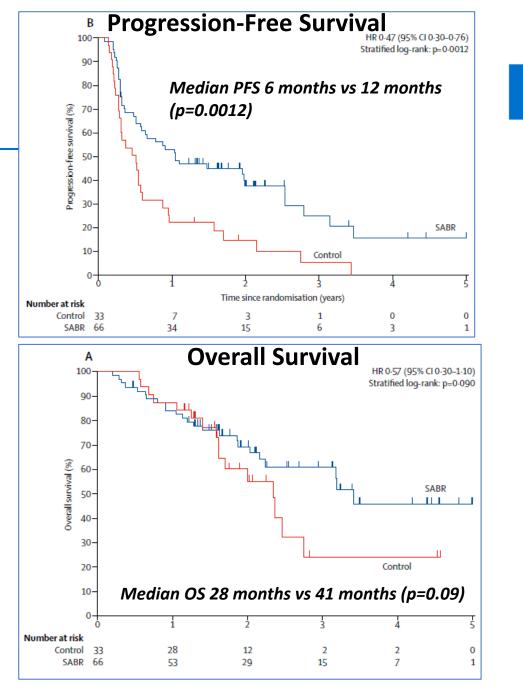

Median PFS 4.4 months vs 14.2 months

Median OS 17.0 months vs 41.2 months

🛣 Cityof Hope.

D Gomez, JCO, 2019

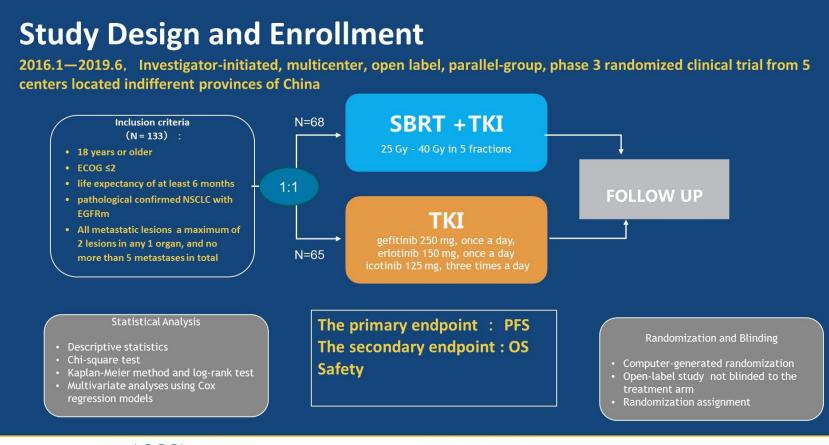
SABR-COMET


D Palma, ASTRO, 2018

🛣 Cityof Hope.

SABR-COMET

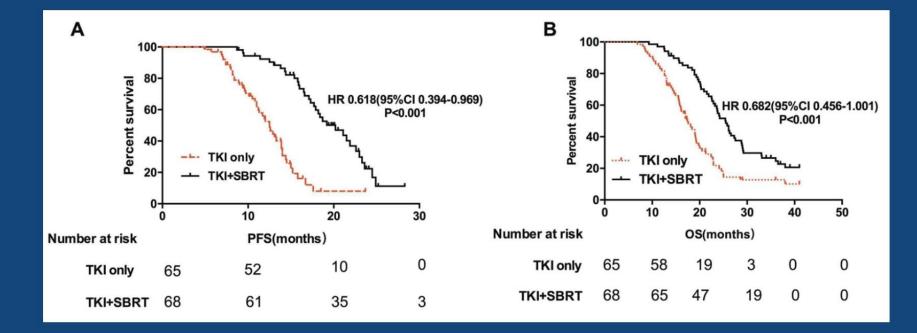
City of Hope


	Control group (n=33)	SABR group (n=66)
Age	69 (64-75)	67 (59-74)
Sex		
Men	19 (58%)	40 (61%)
Women	14 (42%)	26 (39%)
Site of original primary tu	mour	
Breast	5 (15%)	13 (20%)
Colorectal	9 (27%)	9 (14%)
Lung	6 (18%)	12 (18%)
Prostate	2 (6 %)	14 (21%)
Other	11 (33%)	18 (27%)
Time from diagnosis of primary tumour to randomisation (years)	2·3 (1·3-4·5)	2·4 (1·6-5·3)
Number of metastases		
1	12 (36 %)	30 (46%)
2	13 (40%)	19 (29%)
3	6 (18%)	12 (18%)
4	2 (6%)	2 (3%)
5	0 (0%)	3 (5%)
Location of metastases		
Adrenal	2/64 (3%)	7/127 (6%)
Bone	20/64 (31%)	45/127 (35%)
Liver	3/64 (5%)	16/127 (13%)
Lung	34/64 (53%)	55/127 (43%)
Other*	5/64 (8%)	4/127 (3%)

D Palma, Lancet, 2019

SINDAS trial (ASCO 2020)

 First-Line TKI With or Without Aggressive Upfront Local Radiation Therapy in Patients with EGFRm Oligometastatic NSCLC



PRESENTED AT: 2020ASCO ANNUAL MEETING MIDIA MEETING Bildes are the property of the author, permission reauted for reuse.

PRESENTED BY: Xiaoshan Wang

SINDAS Trial: Outcomes

Kaplan-Meier plot of PFS (A) and OS (B)

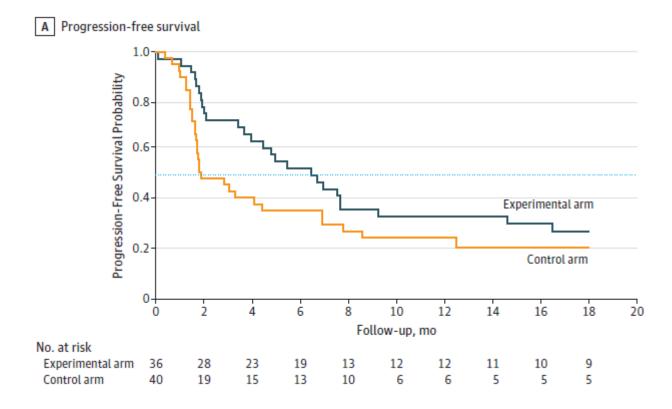
SBRT=stereotactic body radiotherapy. HR=hazard ratio. (A) PFS and (B) OS. PFS,=progression-free survival; OS,=overall survival; C= confidence interval

PRESENTED BY: Xiaoshan Wang

SINDAS Trial: Toxicity

Toxicity (Grade 3 adverse events)

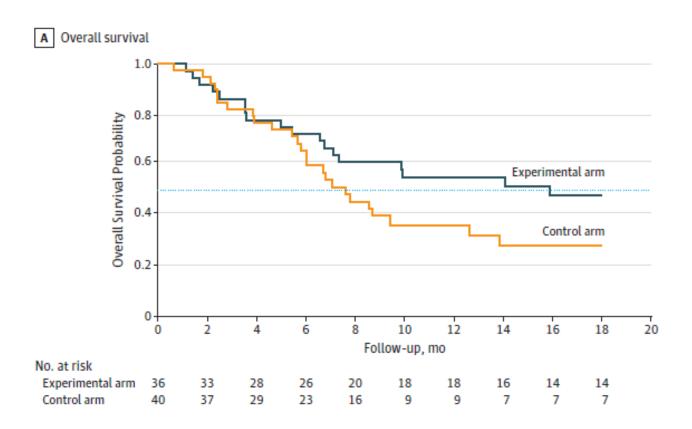
	TKI and SBRT arm (20 incidences)	TKI arm (13 incidences)	Р
grade skin rash	10 (50%)	8 (62%)	0.423
severe liver injury	0	1 (8%)	0.208
pneumonitis	6 (30%)	2 (15%)	0.338
Esophagitis	3 (15%)	2 (15%)	0.976
Pathological rib fracture	1 (5%)	0	0.413



2020ASCO #ASCO20 PRESENTED AT: Slides are the property of the author, ANNUAL MEETING permission required for reuse.

- Randomized phase 2 study of 76 patients with advanced NSCLC
- Pembro vs RT followed by pembro (8 Gy x 3; single tumor site)
- ORR (12 weeks)= 18% pembro vs. 36% pembro+RT (p=0.07)
- DCR (12 weeks)= 40% pembro vs. 64% pembro+RT (p=0.04)
- Median PFS= 1.9 mos pembro vs. 6.6 mos pembro+RT (p=0.19)
- Median OS= 17.6 mos pembro vs. 15.9 mos pembro+RT (p=0.16)
- Subgroup: largest benefit to PD-L1 negative tumors
 - $\circ~$ HR for PFS 0.49, p=0.03
 - $\circ~$ HR for OS 0.48, p=0.046

PEMBRO-RT



B Subgroup analysis	
---------------------	--

Subgroup	Control Events, No./ Total No.	Experimental Events, No./ Total No.	Hazard Ratio (95% CI)	Control Better	Experimental Better	P Value fo
Sex						.03
Male	20/23	14/20	2.31 (1.15-4.62)			
Female	10/17	15/16	0.78 (0.35-1.74)			
ECOG performan	ce score					.57
0	18/22	13/16	1.61 (0.78-3.32)	_		
1	11/17	15/19	1.18 (0.54-2.57)			
PD-L1, %						.15
0	22/25	17/18	2.11 (1.08-4.11)			
1-49	5/8	6/8	0.95 (0.28-3.14)			
≥50	2/5	6/10	0.58 (0.12-2.91)			
Smoking, pack-ye	ears					.12
<10	5/8	7/7	0.76 (0.24-2.41)			
≥10	25/32	22/29	1.73 (0.97-3.09)			
Histology						.72
Nonsquamous	27/36	26/31	1.45 (0.84-2.51)	_		
Squamous	3/4	3/5	0.82 (0.16-4.16)			
Lines of previous	chemotherapy					.24
1	22/31	20/26	1.22 (0.66-2.24)			
≥2	8/9	9/10	2.35 (0.88-6.24)	-		
Age at randomiza	ition, y					.24
<65	14/22	17/21	1.06 (0.52-2.15)			
≥65	16/18	12/15	2.24 (1.03-4.86)			
Total	30/40	29/36	1.41 (0.85-2.36)	~	\sim	
			0.1		: 	 10
			0.1	Hazard Rat	io (95% CI)	10

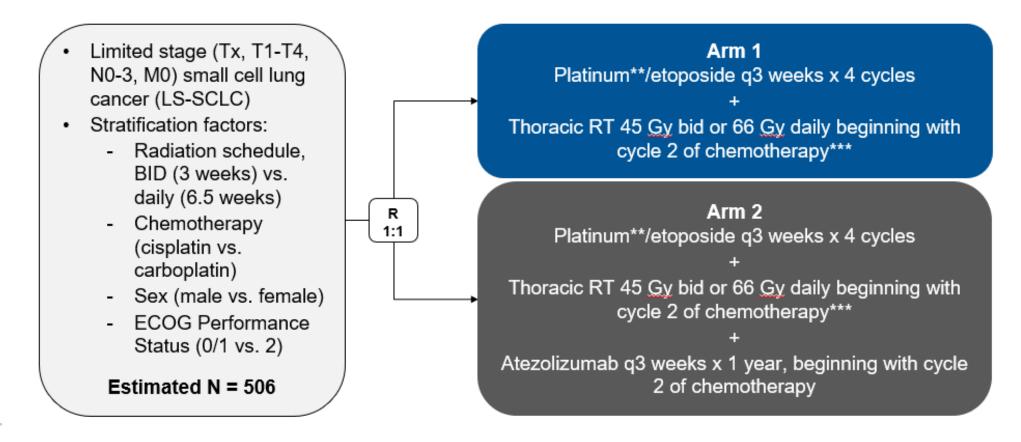
PEMBRO-RT

Subgroup	Control Events, No./ Total No.	Experimental Events, No./ Total No.	Hazard Ratio (95% CI)		Experimental Better	P Value Interac
Sex						.08
Male	17/23	9/20	2.37 (1.04-5.40)			
Female	9/17	12/16	0.90 (0.38-2.16)		<u> </u>	
ECOG performan	ce score					.36
0	15/22	9/16	1.85 (0.80-4.30)	_		
1	10/17	12/19	1.09 (0.47-2.53)			
PD-L1, %						.13
0	21/25	13/18	2.06 (1.00-4.23)			
1-49	3/8	5/8	0.65 (0.15-2.77)			
≥50	1/5	3/10	0.74 (0.08-7.09)			
Smoking, pack-ye	ears					.02
<10	4/8	6/7	0.40 (0.11-1.44)			
≥10	22/32	15/29	2.09 (1.07-4.08)			
Histology						.47
Nonsquamous	24/36	18/31	1.61 (0.86-2.99)	_		
Squamous	2/4	3/5	0.40 (0.04-4.06)			
Lines of previous	chemotherapy					.24
1	19/31	16/26	1.21 (0.62-2.37)			
≥2	7/9	5/10	2.77 (0.83-9.27)	_		
Age at randomiza	ation, y					.58
<65	13/22	12/21	1.31 (0.59-2.90)			
≥65	13/18	9/15	1.81 (0.77-4.30)	_		
Total	26/40	21/36	1.52 (0.85-2.72)	4	\sim	

Hazard Ratio (95% CI)

W Theelen et al., JAMA Onc, 2019

🛣 Cityof Hope.



SMALL CELL LUNG CANCER

 Multiple trials in extensive-stage SCLC show benefit with adding anti-PD-L1 drugs to chemotherapy (e.g. CASPIAN-durvalumab, IMpower133- atezolizumab)

- A potential strategy to improve outcomes in lung cancer with radiation is through the use of targeted therapies, including checkpoint inhibitor (CPI) immunotherapy
- Many trials combining targeted agents with radiation or chemoradiation have failed
- The PACIFIC trial established that maintenance durvalumab after chemoradiation for Stage III locally-advanced NSCLC dramatically improved PFS and OS (a breakthrough)
- Initial results of phase I & II clinical trials demonstrate the relative feasibility and safety of combining immunotherapy with chemoradiation for Stage III NSCLC
- Radiation has an emerging role in the management of oligometastatic lung cancer
- Future trials in locally-advanced, early-stage, and oligometastatic NSCLC (and limited-stage SCLC) will further solidify potential roles for targeted therapies, including CPI, in combination with radiation or chemoradiation

THANK YOU!!

Terence Williams, MD, PhD

Professor and Chair, Department of Radiation Oncology

Adjunct Professor, Department of Cancer Genetics and Epigenetics

City of Hope National Medical Center

Email: terwilliams@coh.org

WTeWilliamsMD @COH_RadOnc