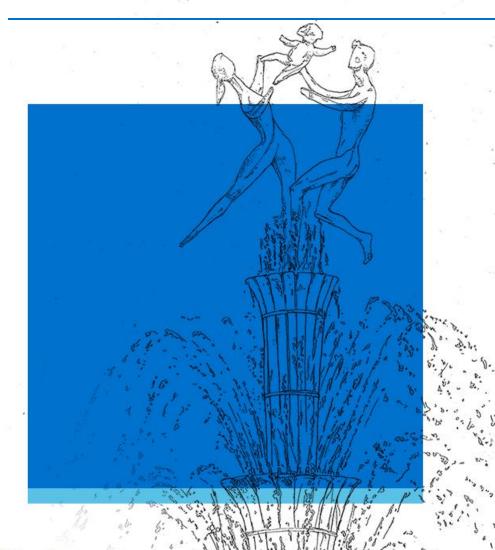


MOVING THE NEEDLE FORWARD IN LUNG CANCER WITH RADIATION: COMBINATIONS WITH TARGETED THERAPIES

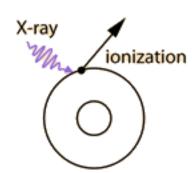
TERENCE WILLIAMS, MD, PHD

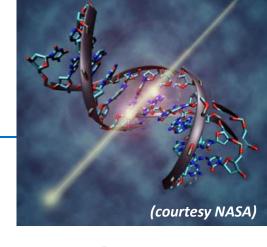
Chair and Professor, Department of Radiation Oncology Adjunct Professor, Department of Cancer Genetics and Epigenetics City of Hope National Medical Center

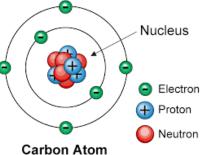

Disclosures

- Consulting/Advisory Board: Novocure, Accuray, January Therapeutics,
 Candel Therapeutics
- Research Funding: National Institutes of Health, American Cancer Society

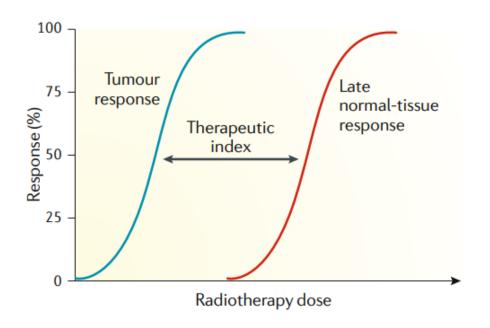
Outline




- Radiation Therapy and the Therapeutic Index
- 2. Locally-advanced NSCLC
- 3. Early-stage NSCLC
- 4. Stage IV NSCLC (oligometastatic)
- 5. SCLC

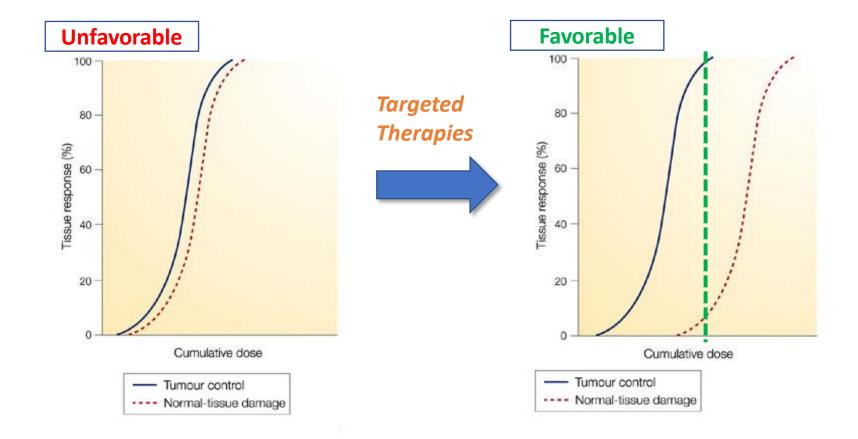

What is Radiation?

- The most common prescribed single therapeutic agent for cancer treatment (~50-60% of cancer patients receive it at one point)
- Ionizing photons, charged particles (proton/electron), heavy particles (carbon), neutron
- 100-1,000x more energy than radiation used in Xrays or CT scans
- Target is typically DNA in cells (e.g. double-strand breaks)
- Most commonly delivered as external beam radiation
- Curative as a single modality or in combination with surgery or systemic therapies (e.g. chemotherapy, immunotherapy, etc.)



Therapeutic Index of Radiotherapy

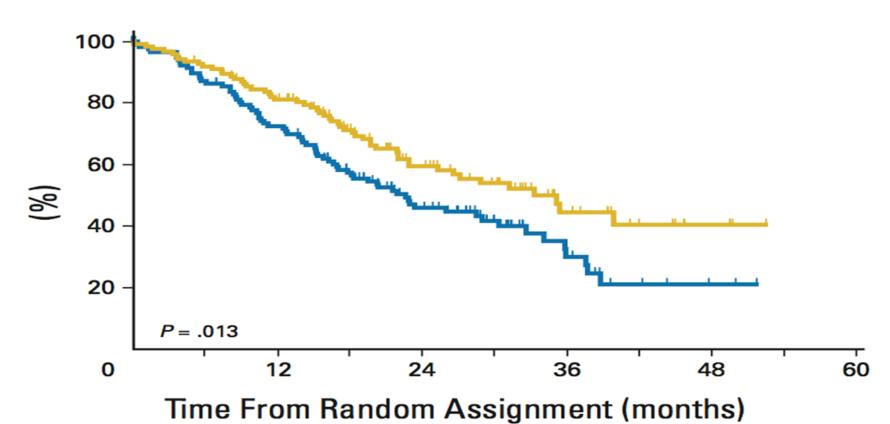
- Ratio between the effects on tumor tissue versus the effects on normal tissues (organs at risk)
- Index is favorable if response of tumor tissue is greater than the surrounding normal tissue
- Therapeutic index can be increased by biological or physical methods
 - Physical: improved tumor targeting
 - Biological: fractionation, radioprotectors, biomarkers to select dose escalation/de-escalation, <u>tumor-</u> <u>specific radiosensitizers or modifiers</u>



De Ruysscher et al., Nature Reviews, 2019, 5:13.

Enhancing Radiation Therapeutic Index with Tumor- Targeted Therapies

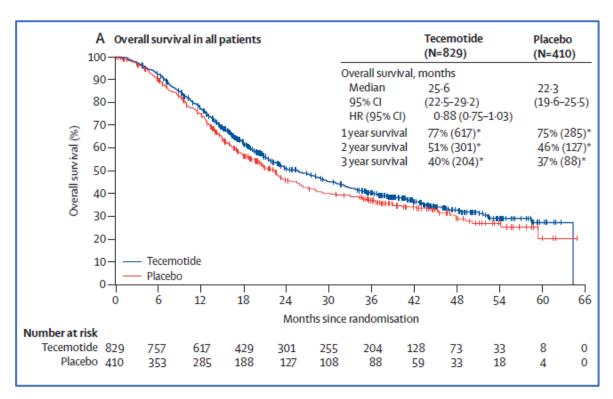
 Identify therapeutic agents which widen the therapeutic index with radiation, by selectively killing tumor cells while minimizing normal tissue toxicity.

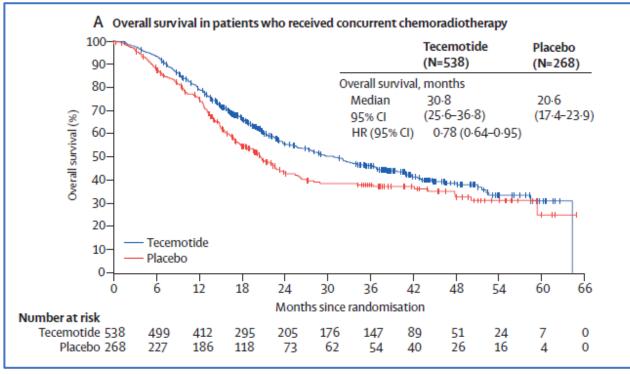

LOCALLY-ADVANCED NSCLC

Failures of Targeted Therapies – Example 1 (Gefitinib)

(Maintenance gefitinib in unselected patients)

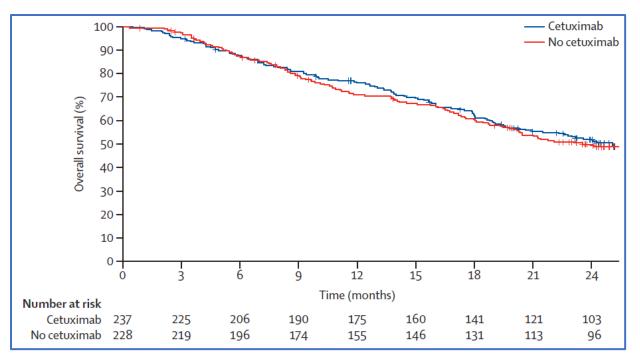
SWOG 0023 - EGFR TKI after chemo/RT


Failures of Targeted Therapies – Example 2 (Bevacizumab)

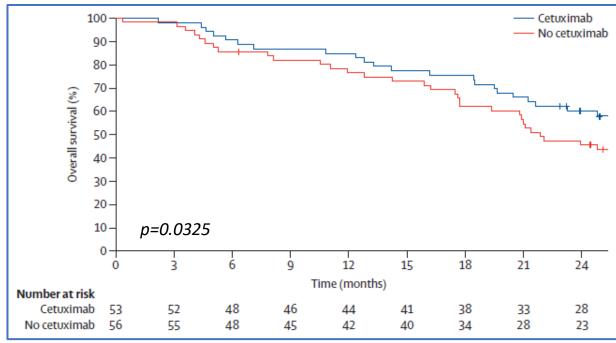

Trial/Institution	Regimen	Status
Ca Consortium (IIIB/IV)	RT → CP/Bev	Closed - 1 gr 5 hemorrhage
Northwestern (IIIB/IV)	RT → CP/Bev	Never Opened
Dana Farber	CP wkly + $\frac{\text{Bev}}{\text{Bev}}$ q3 wk + RT \rightarrow CP/Bev q3 wk \rightarrow $\frac{\text{Bev}}{\text{Bev}}$ x 1 yr	Closed 4 pt – 1 gr 5 hemorrhage, 1 PE
NCI 7213 (Vokes)	C/P/Bev/RT	Closed; 1 pt accrued
Sarah Cannon (Spigel)	Carbo/Pem/Bev/RT → Carbo/Pem/Bev → Bev	Closed – 5 pt – 2 TE fistulas
UNC (Socinski)	CP/Bev → CP/Bev/RT → Bev/Erlotinib	After 21 pt – 1 gr 5 and 1 gr 3 hemorrhage

Failures of Targeted Therapies – Example 3 (Tecemotide)

START trial: Maintenance Tecemotide/L-BLP25 (MUC1-targeted liposomal peptide vaccine)



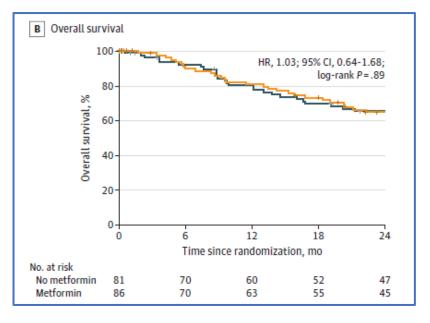
Failures of Targeted Therapies- Example 4 (Cetuximab)

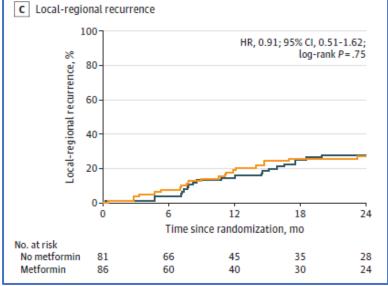


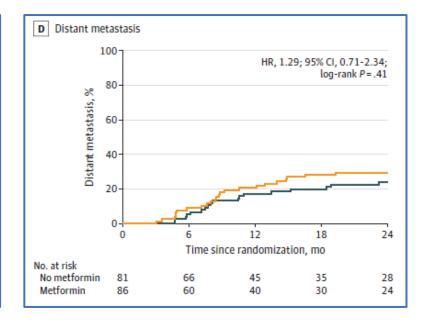
RTOG 0617: Cetuximab vs. no Cetuximab

All patients

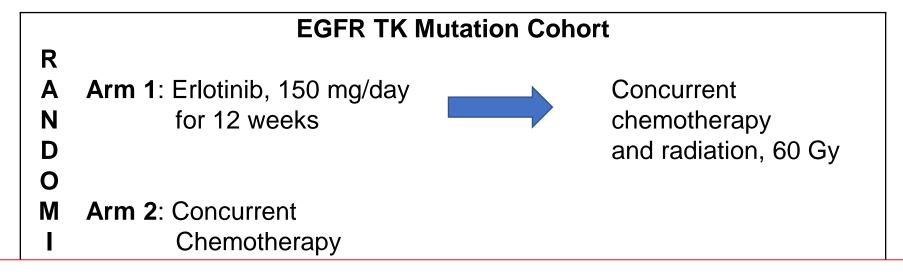
Tumors with high EGFR expression (H score≥ 200)

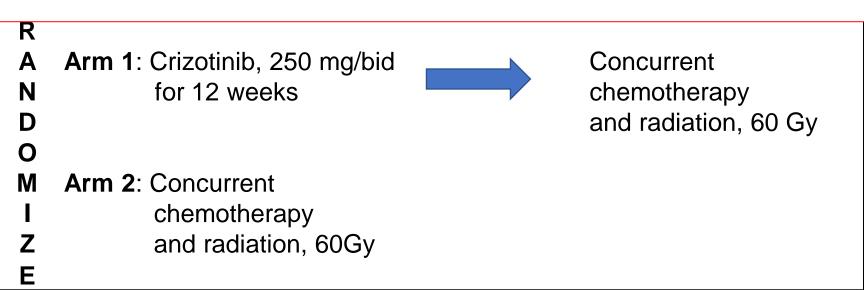



Failures of Targeted Therapies – Example 5 (Metformin)



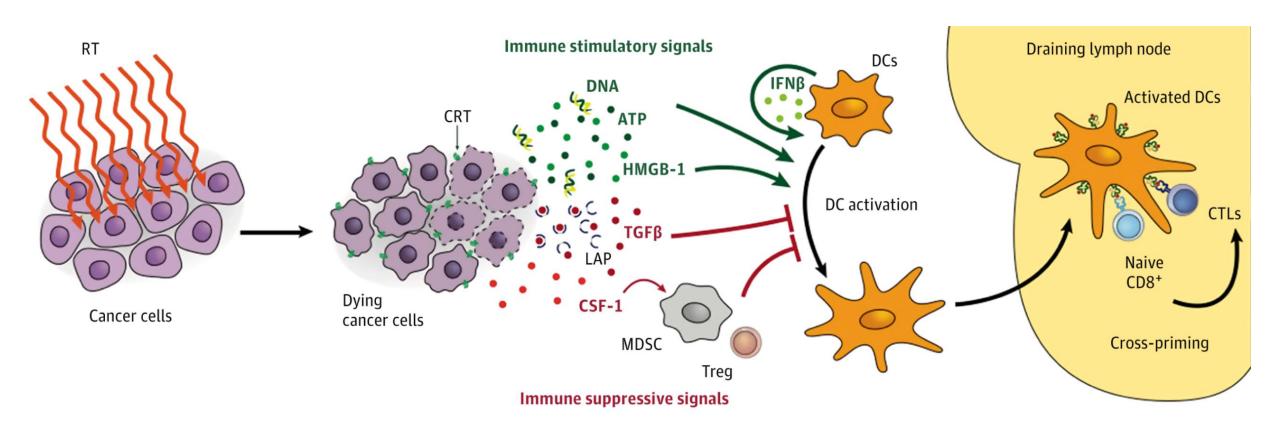
JAMA Oncology | Original Investigation


Addition of Metformin to Concurrent Chemoradiation in Patients With Locally Advanced Non-Small Cell Lung Cancer The NRG-LUO01 Phase 2 Randomized Clinical Trial

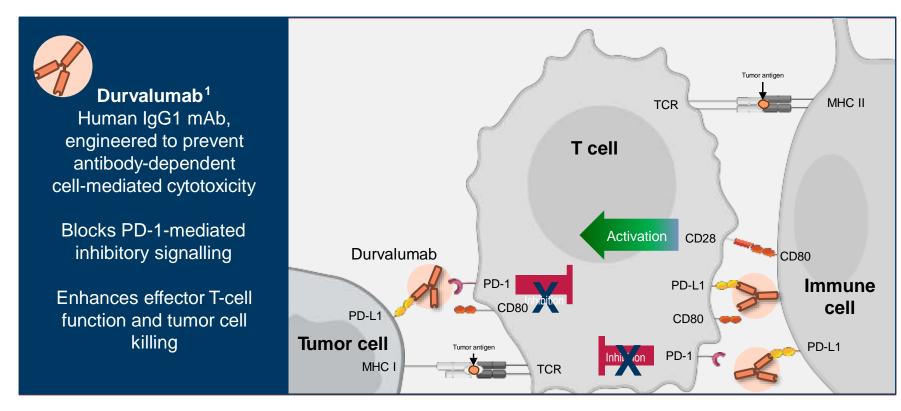


Individualized Combined Modality Therapy for Stage III Non-small Cell Lung Cancer (NSCLC) - RTOG 1306/Alliance 31101

CLOSED DUE TO POOR ACCRUAL



THEN CAME IMMUNOTHERAPY....


Role of Local Radiation Therapy in Cancer Immunotherapy

Durvalumab Blocks PD-L1 Binding to PD-1

mAb, monoclonal antibody; MHC, major histocompatibility complex; PD-1, programmed cell dealth-1; PD-L1, programmed cell death ligand-1; TCR, T-cell receptor Stewart R, et al. Cancer Immunol Res 2015;3:1052-62


PACIFIC: Study Design

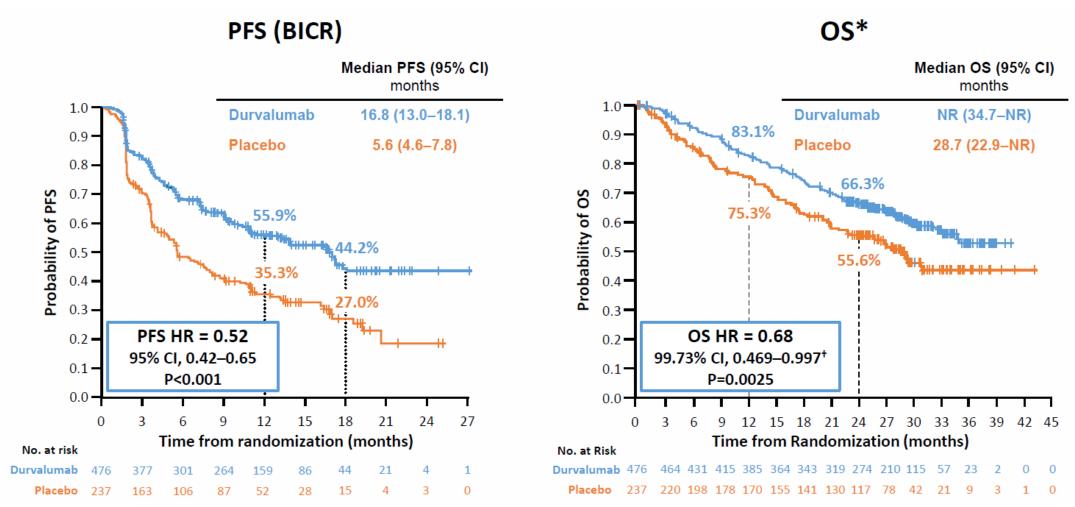
Phase III, Randomized, Double-blind, Placebo-controlled, Multicenter, International Study

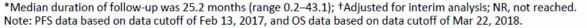
- Patients with stage III, locally advanced, unresectable NSCLC who have not progressed following definitive platinum-based cCRT (≥2 cycles)
- · 18 years or older
- WHO PS score 0 or 1
- Estimated life expectancy of ≥12 weeks
- · Archived tissue was collected

All-comers population

Co-primary endpoints

- PFS by BICR using RECIST v1.1*
- OS


Key secondary endpoints


- · ORR (per BICR)
- · DoR (per BICR)
- Safety and tolerability
- PROs

Durvalumab Blocks PD-L1 Binding to PD-1

Impact of Time from Prior RT to Randomization

	PFS (BICR)			OS						
	HR		No. of events / no. of patients (%)		HR		No. of events / no. of patients (%)			
		(95% CI)	Durvalumab	Placebo		(95% CI)	ļ.	Durvalumab	Placebo
ITT ^{1,2}		$\vdash\!$		214/476 (45.0)	157/237 (66.2)		$\vdash \!$		183/476 (38.4)	116/237 (48.9)
Time from last radiotherapy to										
randomization <14 days ≥14 days	<u> </u>	•— -	→	50/120 (41.7) 164/356 (46.1)	46/62 (74.2) 111/175 (63.4)	<u> </u>	•— -•	-	39/120 (32.5) 144/356 (40.4)	35/62 (56.5) 81/175 (46.3)
	0.25	0.5	1	2		0.25	0.5	1	2	
Dur	valumab be	etter	_	Placebo better	Durv	alumab b	etter	_	Placebo better	-

		TTDM (BICR)	ORR (BICR)			
	HR	No. of events / n	o. of patients (%)	%		
	(95% CI)	Durvalumab	Placebo	Durvalumab	Placebo	
III1	0.52 (0.39, 0.69)	131/476 (27.5)	98/237 (41.4)	28.4	16.0	
Time from last radiotherap to randomization	у	7				
<14 days ≥14 days	0.33 (0.20–0.55) 0.70 (0.51–0.95)	30/120 (25.0) 101/356 (28.4)	34/62 (54.8) 64/175 (36.6)	34.2 26.5	16.4 15.8	

^{*}Not calculated if subgroup has <20 events; NA, not available.

Note: PFS, TTDM, and ORR data based on data cutoff of Feb 13, 2017, and OS data based on data cutoff of Mar 22, 2018

^{1.} Antonia SJ, et al. N Engl J Med 2017;377:1919-29;

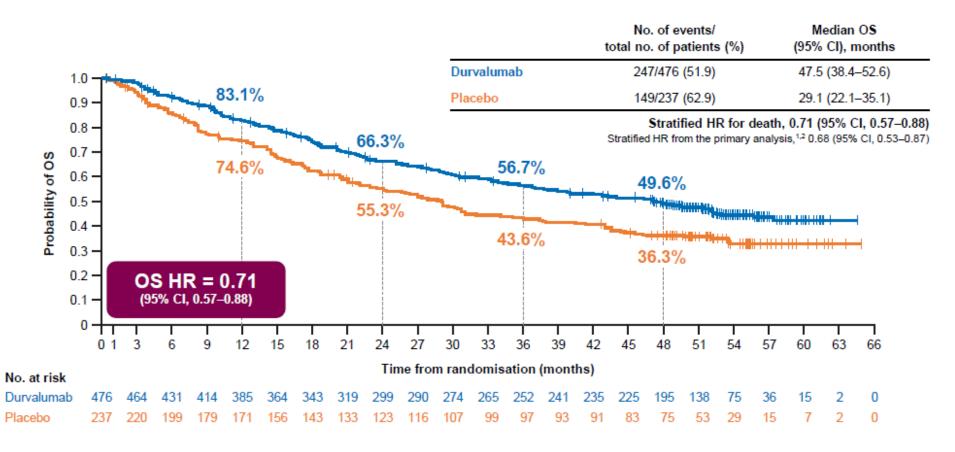
^{2.} Antonia SJ, et al. N Engl J Med 2018; Epub Sep 25.

Similar Toxicity Profiles Regardless of Time from Prior RT to Randomization

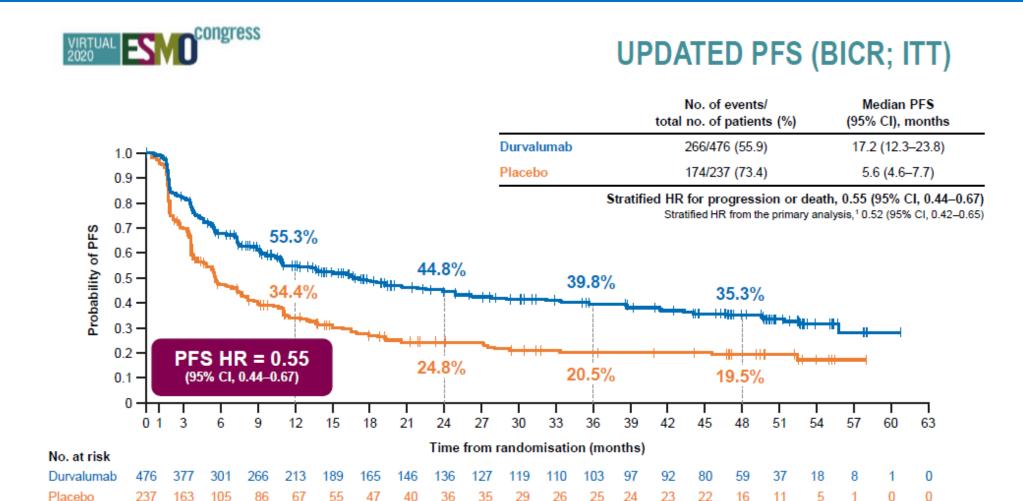
	<14	days	≥14 days		
	Durvalumab (N=120)	Placebo (N=60)	Durvalumab (N=355)	Placebo (N=174)	
Any-grade all-causality AEs, n (%)	118 (98.3)	57 (95.0)	342 (96.3)	165 (94.8)	
Grade 3/4	37 (30.8)	18 (30.0)	108 (30.4)	43 (24.7)	
Outcome of death	6 (5.0)	7 (11.7)	15 (4.2)	8 (4.6)	
Leading to discontinuation	16 (13.3)	9 (15.0)	57 (16.1)	14 (8.0)	
Serious AEs, n (%)	36 (30.0)	20 (33.3)	102 (28.7)	34 (19.5)	
Any-grade pneumonitis/radiation pneumonitis, n (%)	47 (39.2)	10 (16.7)	114 (32.1)	48 (27.6)	
Grade 3/4	5 (4.2)	1 (1.7)	12 (3.4)	5 (2.9)	
Outcome of death	0	2 (3.3)	5 (1.4)	3 (1.7)	

Note: Data based on data cutoff of Mar 22, 2018.

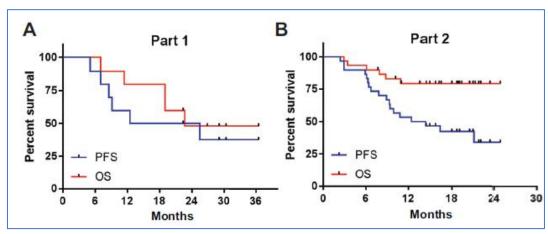
Patients with multiple AEs are counted once at the maximum reported CTCAE grade.



PACIFIC: 4 yr Survival Update


UPDATED OS (ITT)

PACIFIC: 4 yr Survival Update


DETERRED: Phase II Concurrent Atezolizumab with Chemoradiation for Unresectable NSCLC

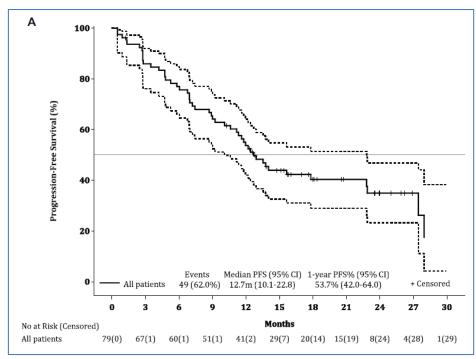
■ Part 1 (n=10): CRT followed by consolidation chemo and maintenance atezolizumab (median f/u 22.5 mo)

■ Part 2 (n=30): concurrent CRT <u>with atezolizumab</u> followed by same consolidation chemo and maintenance atezolizumab (median f/u 15.1 mo)

- Median PFS:
 - Part 1= 18.6 months
 Part 2= 13.2 months
- Median OS:
 - o Part 1= 22.8 months Part 2= not reached

- Toxicity: 80% of patients experienced at least 1 grade 3+ adverse event
 - o Part 2= 20% grade 3+ immune-related toxicity; 20% treatment discontinuation
 - No immune-related grade 5 toxicities

NICOLAS Trial: Phase II Concurrent Nivolumab with Chemoradiation for Unresectable NSCLC



 79 patients with concurrent cisplatin-based chemoradiation with concurrent nivolumab, followed by nivolumab maintenance

- Median PFS (median f/u 21.0 mos)= 12.7 months
- Median OS (median f/u 32.6 mos)= 38.8 months

Table 2. Treatment-Related AEs (Safety Cohort; N = 77)					
Information on Treatment-Related AEs	Radiotherapy	Nivolumab			
Safety cohort: number of patients	77	76			
Any AE (SAE)	780	(61)			
Treatment-related AEs (SAEs)	168 (14)	249 (26)			
Treatment-related AEs (SAEs) grade 3-5	32 (9)	44 (18)			
Treatment-related AEs (SAEs) leading to death	2 (1)	7 (6)			
Treatment-related AEs (SAEs) leading to permanent discontinuation of treatment	6 (-)	16 (-)			

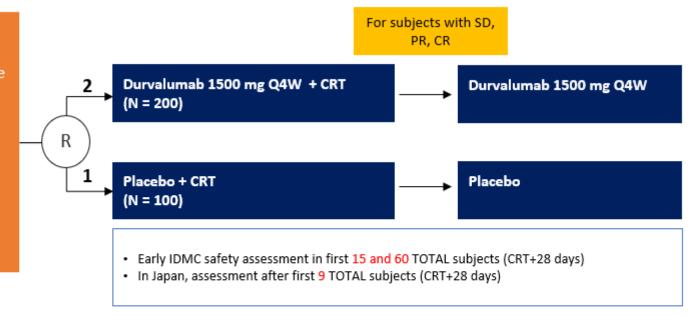
AE, adverse event; SAE, severe adverse event

KEYNOTE-799: Phase II Concurrent Pembrolizumab with Chemoradiation for Unresectable NSCLC

- Cohort A: 1 cycle of induction chemo + pembro → CRT +pembro; chemo= carboplatin/paclitaxel
- Cohort B: 1 cycle of induction chemo + pembro → CRT + pembro; chemo= cisplatin/pemetrexed
- 112 patients cohort A, 102 patients in cohort B
- ORR: ~70% in both cohorts
- Gr3-5 treatment-related AEs occurred in 50-64%
- Gr3+ pneumonitis 7-8%
- Conclusions: promising activity and manageable toxicity

Ongoing Phase III Studies

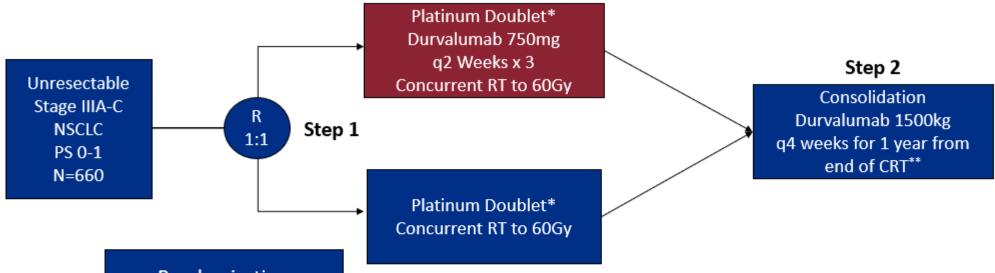
- PACIFIC-2: Durvalumab + CRT → Durva vs. CRT
- EA 5181: Durvalumab + CRT→ Durva vs. PACIFIC regimen
- Checkmate 73L: Nivo + CRT→ Nivo + Ipi (or Nivo + CRT→ Nivo) vs. PACIFIC regimen
- LAURA: Osimertinib Maintenance (or placebo) After Definitive Chemoradiation in Patients with Unresectable EGFRm-Positive Stage III NSCLC


Ongoing Phase III Studies: PACIFIC-2

Study Population

- Patients with unresectable, Stage
 III NSCLC
- All-comers (PD-L1 expression-agnostic)
- ECOG PS 0-1

Randomised N = 300 patients


Stratification

- Age (≤65, >65)
- Stage (IIIA vs IIIB/C)

- Primary Endpoints: ORR, PFS
- Key Secondary Endpoints: OS, OS24
- Treat to progression

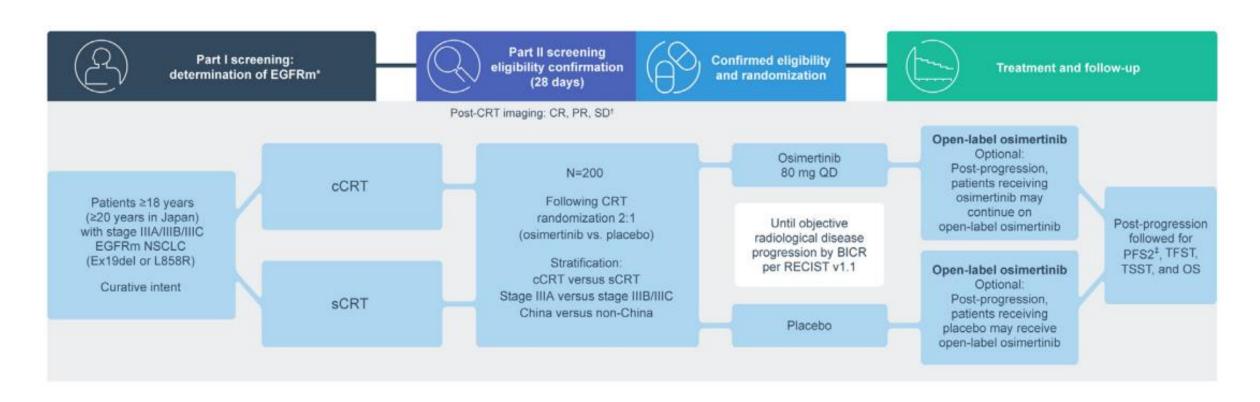
Ongoing Phase III Studies: EA 5181

Randomization

Stratified by:

- 1) Planned chemotherapy
- Age
- Sex
- 4) Stage (IIIA vs IIIB vs IIIC)

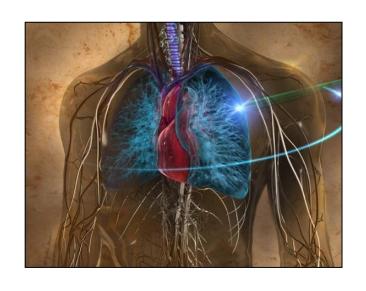
*Investigator choice


Cisplatin 50 mg/m2 D1, 8, 29, 36; etoposide 50 mg/m2 D1-5, 29-33 Cisplatin 75 mg/m2 D1, 22; pemetrexed 500 mg/m2 D1, 22 (nonsquamous only) Carboplatin AUC 2 D1, 8, 15, 22, 29, 36; paclitaxel 45 mg/m2 D1, 8, 15, 22, 29, 36

**Starting within 14 days of CRT unless toxicity has not resolved to ≤ grade 2, but not later than 45 days post-CRT

Ongoing Phase III Studies: LAURA

S Lu, et al., Clin Lung Cancer, 2021


EARLY STAGE NSCLC

SURGERY VERSUS SBRT

VS

High-risk operable patients have similar 3 yr survival rates whether receiving surgery or SBRT

SAbR Data	Stage	3-Year Survival
SAbR- Dutch [7]	T1-T2N0	85%
SAbR-Japan(JCOG 0403) [8]	T1N0	76%
SAbR-Japan [9]	T1-T2N0	86%
SAbR-Japan [10]	T1-T2N0	80%
SAbR-Dutch [6]	T1-T2N0	80%
RTOG 0618	T1-T3N0	77%
Randomized Sublobar Data		
ACOSOG -Z4032 [4]	T1N0	71%
Non-Randomized Sublobar Data [11-13]	T1-T2N0	60-80%

Lagerwaard et al., IJROBP, 83(1), 348-353 (2012)Nagata et al., IJROBP, 78(3), S27-28 (2010)*Uematsu et al., IJROBP, 51(3), 666-670* (2001)Onishi et al., IJROBP, 81(5), 1352-1358 (2011)Verstegen et al., Annals of Onc, 24(6), 1543-48 (2013) Fernando et al., JCO, 32(23), 2456-62 (2014)Birdas et al., Ann of Thor Surg, 81(2), 434-38 (2006) Fernando et al., J Thor & CV Surg, *129(2), 261-67 (2005)* Santos et al., Surgery, 134(4), 691-97

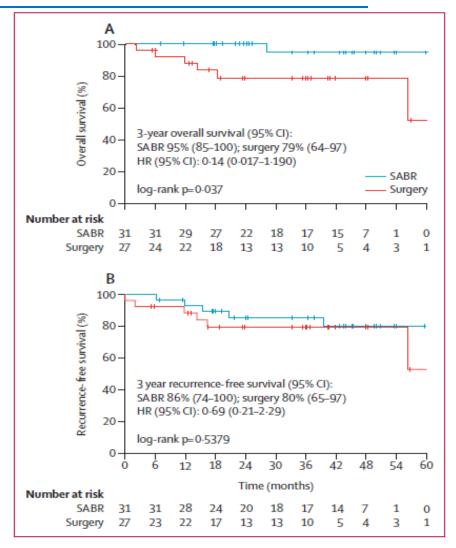
(2003)

Randomized Trials Comparing SBRT versus Surgery for Early Stage, Operable NSCLC

- ROSEL (Netherlands/EORTC)
 - Stage IA
 - o Randomized to Lobectomy versus 3-5 fraction SBRT (20 Gy x 3 or 12 Gy x 5)
 - Closed due to poor accrual
- STARS Trial (US multi-institutional, MD Anderson)
 - o Randomized to surgery versus Cyberknife (60 Gy in 3-4 fx)
 - Closed due to poor accrual
- RTOG 1021/ACOSOG Z4099 (U.S.)
 - Phase III Study of Sublobar Resection (+/- Brachytherapy) versus Stereotactic Body Radiation Therapy in High Risk Patients with Stage I Non-Small Cell Lung Cancer (NSCLC)
 - Accrual goal 400 patients
 - Closed due to poor accrual
- Many retrospective studies supporting equipoise between SBRT and Surgery (especially wedge or sublobar resection)...

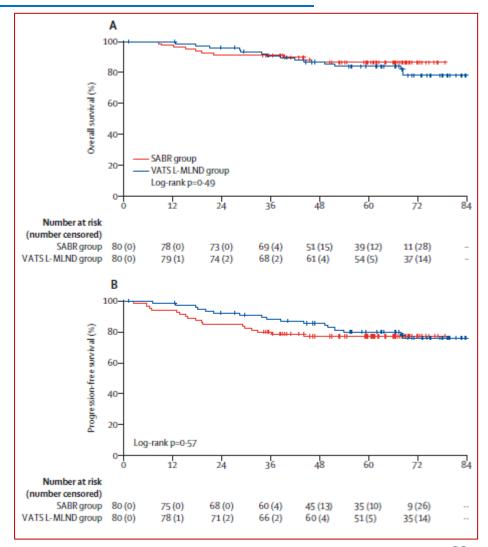
Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials

Joe Y Chang*, Suresh Senan*, Marinus A Paul, Reza J Mehran, Alexander V Louie, Peter Balter, Harry J M Groen, Stephen E McRae, Joachim Widder, Lei Feng, Ben E E M van den Borne, Mark F Munsell, Coen Hurkmans, Donald A Berry, Erik van Werkhoven, John J Kresl, Anne-Marie Dingemans, Omar Dawood, Cornelis J A Haasbeek, Larry S Carpenter, Katrien De Jaeger, Ritsuko Komaki, Ben J Slotman, Egbert F Smitt, Jack A Rotht


- Pooled analysis of STARS and ROSEL trials
- cT1-2a (<4 cm)N0M0 NSCLC, operable
- Randomized 1:1 to SABR vs lobectomy + mediastinal LND
- 58 patients (31 SABR, 27 surgery)
- Median follow-up: 40.2 months (SABR) and 35.4 months (surgery)

Results (STARS and ROSEL pooled analysis)

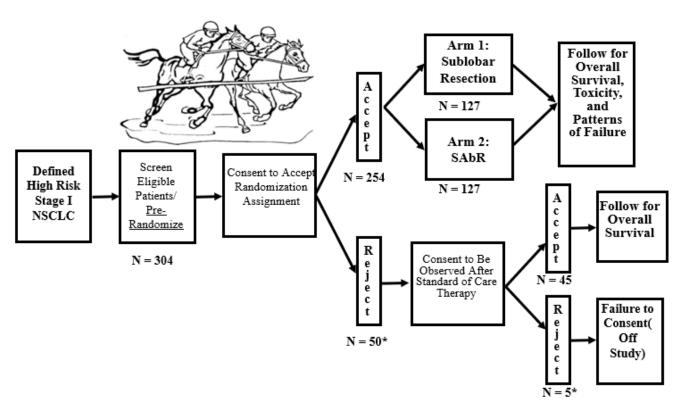
- 3 yr overall survival (estimated): 95%
 SABR vs. 79% surgery (p=0.037)
- 3 yr RFS: 86% SABR vs. 80% surgery (p = NS)
- Toxicity
 - SABR: grade 3= 10%, grade 4= 0%, grade 5= 0%
 - Surgery: grade 3-4= <u>44%</u>, grade 5= <u>4%</u>



J Chang, S Senan et al., Lancet Oncol 2015

REVISED STARS Trial

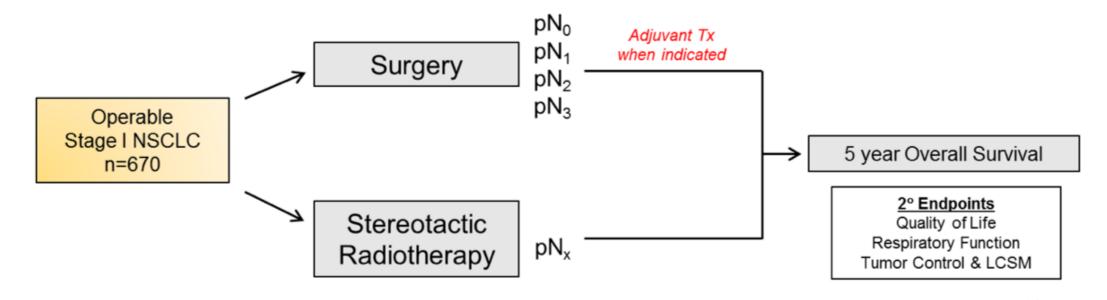
- 80 patients with Stage I operable NSCLC (patients not included in the initial STARS trial)
- 54 Gy/3 fractions (peripheral) or 50 Gy/4 fractions (central with SIB to GTV to 60 Gy)
- Pre-planned comparison to propensity matched surgical cohort who underwent VATS lobectomy with mediastinal LND, with non-inferiority statistics
- Median f/u time 5.1 yrs
- Overall survival:
 - SABR: 91% at 3 yrs and 87% at 5 yrs
 - VATS: 91% at 3 yrs, and 84% at 5 yrs
- Toxicity: No grade 4-5 toxicity; grade 3: 1% dyspnea
- Conclusions: Long-term survival of SABR is non-inferior to VATS lobectomy
 + mLND for operable Stage I NSCLC



The **STABLEMATES** Trial

(formerly RTOG 1021/ACOSOG Z4099)

A Randomized Phase III Study of <u>Sublobar Resection</u> (SR) versus <u>Stereotactic Ablative Radiotherapy</u> (SAbR) in High Risk Patients with Stage I Non-Small Cell Lung Cancer (NSCLC)



VALOR Trial

Veterans Administration Lung cancer surgery Or stereotactic Radiotherapy Trial

A Department of Veterans Affairs Cooperative Study - CSP #2005

Stratified by

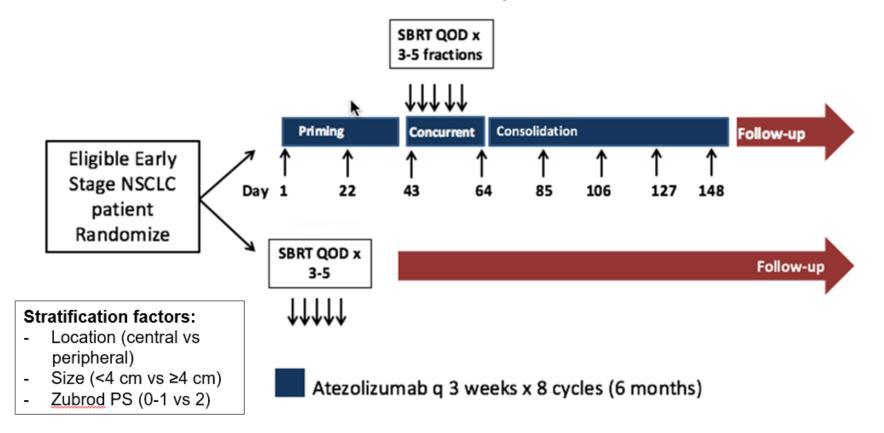
- Facility
- IA vs IB
- Central v Peripheral

Surgery

- Lobectomy or anatomic seg
- Lymph node sampling
- VATS/Robotic

RT

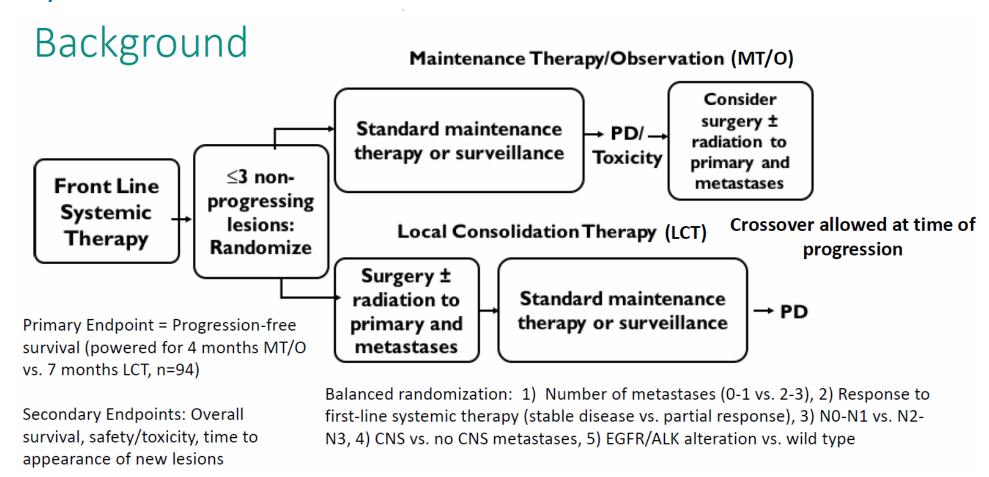
- Central: 10 Gy x 5
- Peripheral: 18 Gy x 3, 14 Gy x 4, 11.5 Gy x 5



WHAT ABOUT TARGETED AGENTS IN EARLY STAGE DISEASE?

Ongoing Phase 3 Trials

- PACIFIC-4: SBRT vs durvalumab after SBRT (1500 mg durva q4 wks)
- NRG/SWOG S1914: SBRT vs atezolizumab before/during/after SBRT


STAGE IV NSCLC

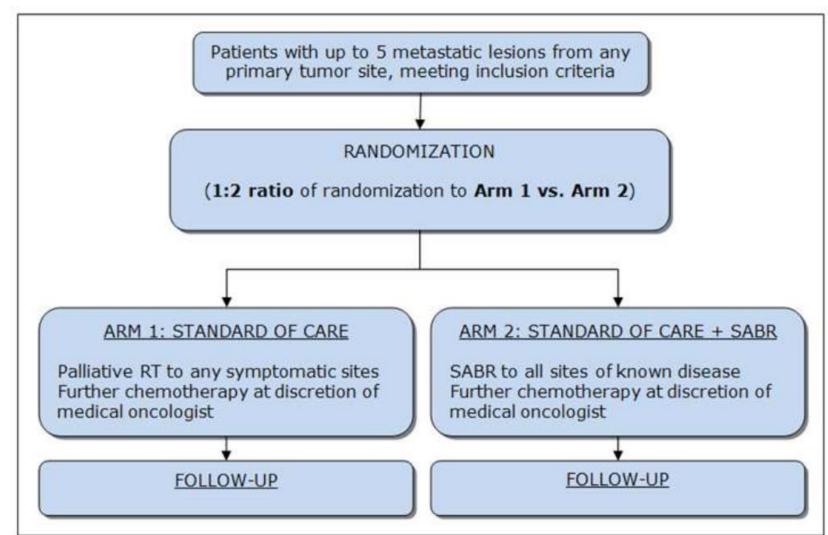
ROLE OF RADIATION BECOMING INCREASINGLY IMPORTANT IN STAGE IV DISEASE

Randomized phase II trial

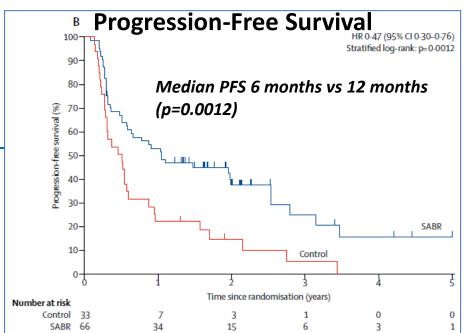
Oligometastatic NSCLC

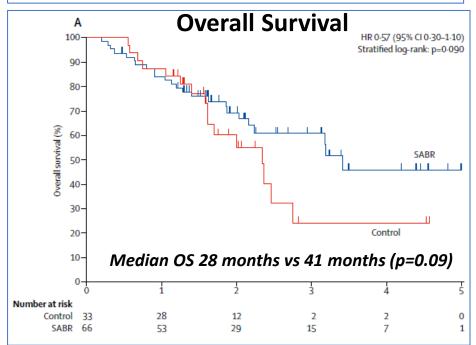
DSMB recommended early closure after 49 patients

Overall Survival


Median PFS 4.4 months vs 14.2 months

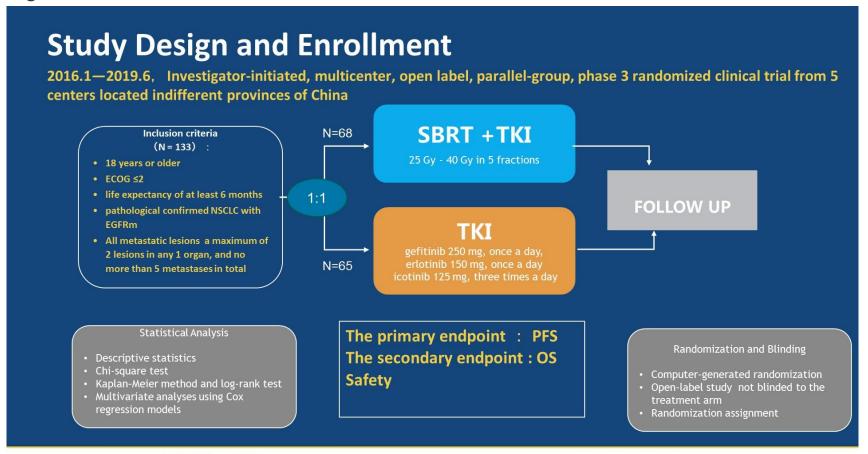
Median OS 17.0 months vs 41.2 months


SABR-COMET



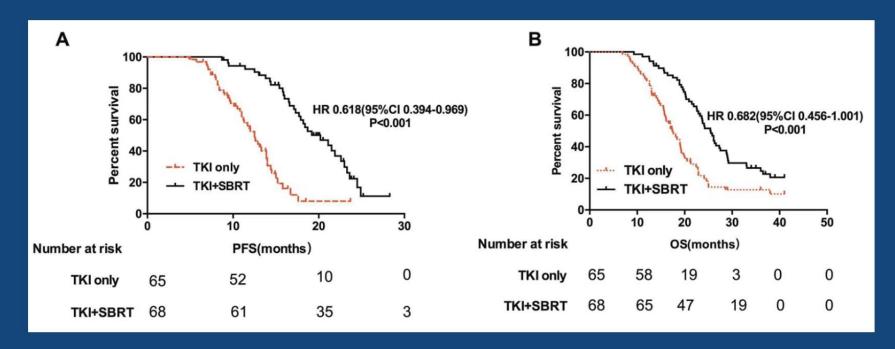
SABR-COMET

	Control group (n=33)	SABR group (n=66)		
Age	69 (64-75)	67 (59-74)		
Sex				
Men	19 (58%)	40 (61%)		
Women	14 (42%)	26 (39%)		
Site of original primary tumour				
Breast	5 (15%)	13 (20%)		
Colorectal	9 (27%)	9 (14%)		
Lung	6 (18%)	12 (18%)		
Prostate	2 (6 %)	14 (21%)		
Other	11 (33%)	18 (27%)		
Time from diagnosis of primary tumour to randomisation (years)	2·3 (1·3-4·5)	2.4 (1.6-5.3)		
Number of metastases				
1	12 (36 %)	30 (46%)		
2	13 (40%)	19 (29%)		
3	6 (18%)	12 (18%)		
4	2 (6%)	2 (3%)		
5	0 (0%)	3 (5%)		
Location of metastases				
Adrenal	2/64 (3%)	7/127 (6%)		
Bone	20/64 (31%)	45/127 (35%)		
Liver	3/64 (5%)	16/127 (13%)		
Lung	34/64 (53%)	55/127 (43%)		
Other*	5/64 (8%)	4/127 (3%)		



SINDAS trial (ASCO 2020)

 First-Line TKI With or Without Aggressive Upfront Local Radiation Therapy in Patients with EGFRm Oligometastatic NSCLC



SINDAS Trial: Outcomes

Kaplan-Meier plot of PFS (A) and OS (B)

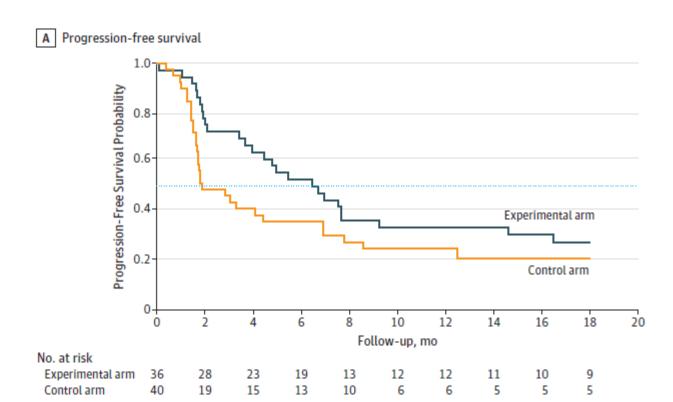
SBRT=stereotactic body radiotherapy. HR=hazard ratio. (A) PFS and (B) OS. PFS,=progression-free survival; OS,=overall survival; C= confidence interval

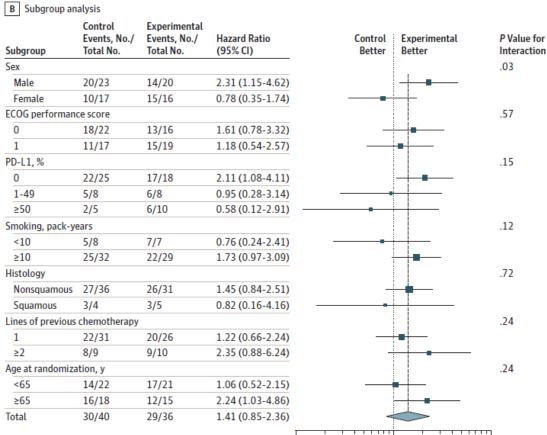
SINDAS Trial: Toxicity

Toxicity (Grade 3 adverse events)

	TKI and SBRT arm (20 incidences)	TKI arm (13 incidences)	P
grade skin rash	10 (50%)	8 (62%)	0.423
severe liver injury	0	1 (8%)	0.208
pneumonitis	6 (30%)	2 (15%)	0.338
Esophagitis	3 (15%)	2 (15%)	0.976
Pathological rib fracture	1 (5%)	0	0.413

PEMBRO-RT

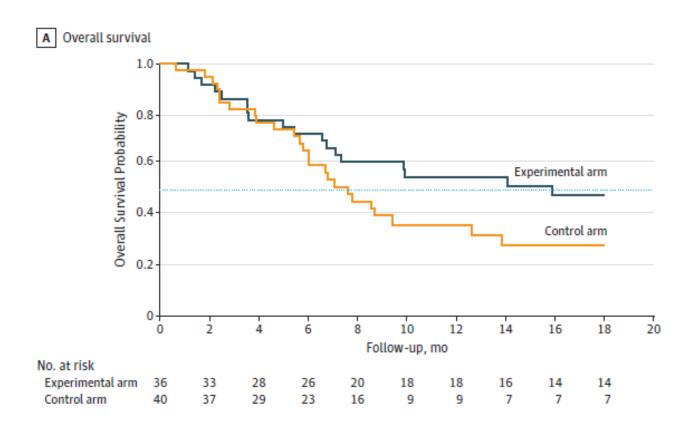



- Randomized phase 2 study of 76 patients with advanced NSCLC
- Pembro vs RT followed by pembro (8 Gy x 3; single tumor site)
- ORR (12 weeks)= 18% pembro vs. 36% pembro+RT (p=0.07)
- DCR (12 weeks)= 40% pembro vs. 64% pembro+RT (**p=0.04**)
- Median PFS= 1.9 mos pembro vs. 6.6 mos pembro+RT (p=0.19)
- Median OS= 17.6 mos pembro vs. 15.9 mos pembro+RT (p=0.16)
- Subgroup: largest benefit to PD-L1 negative tumors
 - HR for PFS 0.49, p=0.03
 - HR for OS 0.48, p=0.046

PEMBRO-RT

10

0.1


Hazard Ratio (95% CI)

PEMBRO-RT

P Value for

Interaction

B Subgroup analysis Control Experimental Events, No./ Events, No./ Hazard Ratio Subgroup Total No. Total No. (95% CI) Sex Male 9/20 2.37 (1.04-5.40) 17/23 Female 9/17 12/16 0.90 (0.38-2.16) ECOG performance score 9/16 1.85 (0.80-4.30) 0 15/22 10/17 12/19 1.09 (0.47-2.53) PD-L1, % 0 21/25 13/18 2.06 (1.00-4.23) 1-49 3/8 5/8 0.65 (0.15-2.77) ≥50 1/5 3/10 0.74 (0.08-7.09) Smoking, pack-years 0.40 (0.11-1.44) <10 4/8 6/7 ≥10 22/32 15/29 2.09 (1.07-4.08) Histology Nonsquamous 24/36 18/31 1.61 (0.86-2.99) 2/4 3/5 Squamous 0.40 (0.04-4.06) Lines of previous chemotherapy 19/31 16/26 1.21 (0.62-2.37) 7/9 5/10 2.77 (0.83-9.27)

Age at randomization, y

13/22

13/18

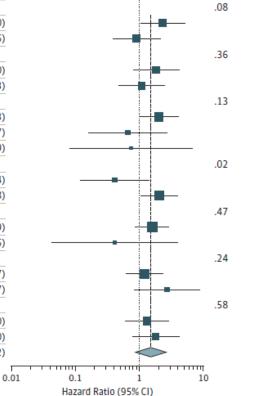
26/40

12/21

9/15

21/36

1.31 (0.59-2.90)


1.81 (0.77-4.30)

1.52 (0.85-2.72)

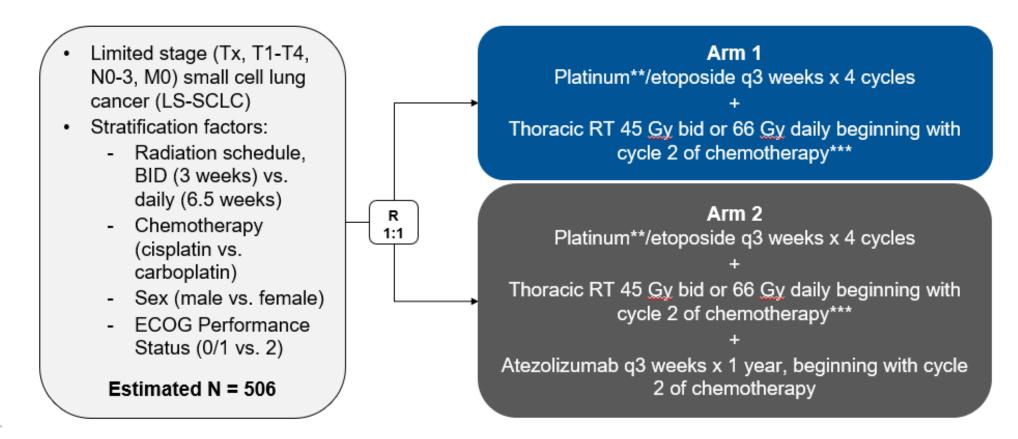
<65

≥65

Total

Control Experimental Better

Better



SMALL CELL LUNG CANCER

NRG LU005

Multiple trials in extensive-stage SCLC show benefit with adding anti-PD-L1 drugs to chemotherapy (e.g. CASPIAN-durvalumab, IMpower133- atezolizumab)

CONCLUSIONS

- A potential strategy to improve outcomes in lung cancer with radiation is through the use of targeted therapies, including checkpoint inhibitor (CPI) immunotherapy
- Many trials combining targeted agents with radiation or chemoradiation have failed
- The PACIFIC trial established that maintenance durvalumab after chemoradiation for Stage III locally-advanced NSCLC dramatically improved PFS and OS (a breakthrough)
- Initial results of phase I & II clinical trials demonstrate the relative feasibility and safety of combining immunotherapy with chemoradiation for Stage III NSCLC
- Radiation has an emerging role in the management of oligometastatic lung cancer
- Future trials in locally-advanced, early-stage, and oligometastatic NSCLC (and limited-stage SCLC) will further solidify potential roles for targeted therapies, including CPI, in combination with radiation or chemoradiation

THANK YOU!!

Terence Williams, MD, PhD

Professor and Chair, Department of Radiation Oncology

Adjunct Professor, Department of Cancer Genetics and Epigenetics

City of Hope National Medical Center

Email: terwilliams@coh.org

@TeWilliamsMD @COH_RadOnc