

KEYNOTE LECTURE

Primary and Metastatic Pleural Malignancies

Valerie W. Rusch, MD

Miner Family Chair in Intrathoracic Cancers Vice Chair, Clinical Research, Department of Surgery Memorial Sloan Kettering Cancer Center Professor of Cardiothoracic Surgery Weill Cornell University Medical College

Advancing Innovative Therapies for Cancers That Invade the Peritoneum and the Pleura

Grant/Research support from Genentech for clinical trial (LCMC 3).

This presentation and/or comments will be free of any bias toward or promotion of the above referenced company or its product(s) and/or other business interests.

- Serve on DSMC for 2 UK trials (MARS 2, RAMON)
- Co-Chair, NCI Thoracic Malignancy Steering Committee (TMSC)

Cultural Linguistic Competency (CLC) & Implicit Bias (IB)

STATE LAW:

The California legislature has passed <u>Assembly Bill (AB) 1195</u>, which states that as of July 1, 2006, all Category 1 CME activities that relate to patient care must include a cultural diversity/linguistics component. It has also passed <u>AB 241</u>, which states that as of January 1, 2022, all continuing education courses for a physician and surgeon **must** contain curriculum that includes specified instruction in the understanding of implicit bias in medical treatment.

The cultural and linguistic competency (CLC) and implicit bias (IB) definitions reiterate how patients' diverse backgrounds may impact their access to care.

The following CLC & IB components will be addressed in this presentation:

- Communication issues.
- Common oversight of early diagnosis in underserved and socioeconomically depressed patients.

Metastatic and primary pleural malignancies

- Pleural metastases occur from many solid tumors
- Metastatic lung and breast cancers most common
 - recent advances in tumor biology and in systemic therapy (TKIs, IO) usually supersede considerations of intrapleural therapy
 - in most instances, locoregional treatment focuses on symptom control (pleural effusion) via PleurX insertion or chemical pleurodesis (bedside or VATS)
- Occasional role for surgical resection, e.g. metastatic thymic malignancies
 - \circ few systemic therapy options
 - \circ more indolent clinical course
 - $\,\circ\,$ disease that usually remains intrathoracic
- Focus of today's discussion: malignant pleural mesothelioma (MPM)

Challenges of studying and treating MPM: a rare disease

Source: US Cancer Statistics; cdc.gov/cancer/about/databriefs March, 2022 (~2,800 cases annually)

*New mesothelioma cases per 100,000 population. Based on 47 registries that met high-quality data criteria for all years 1999–2018, covering 97% of the U.S. population.

- By virtue of risk factors (occupational asbestos exposure), patients predominantly male, Caucasian
 - o aging patient population (due to asbestos control legislation in Western countries)
 - frequent medical comorbidities
- Female patients either have idiopathic disease or history of second-hand asbestos exposure
- Cancer survivors (s/p mantle RT for Hodgkin's) form special MPM patient subgroup

MPM: *Defining the unmet needs* Historical context

	1982	2022
Accurate path diagnosis	Difficult: required electron microscopy	Routine, supported by IHC
Knowledge of tumor biology	None	Evolving (BAP-1, etc); still does not significantly affect clinical care
Staging system	None	TNM system internationally accepted but needs refinement
Pre-treatment staging	Very limited (CXR, CT)	CT, PET, MRI, laparoscopy, EBUS; still need greater accuracy in clin staging
Role of surgery? M&M?	Not defined; EPP primary operation; high M&M	Better defined; EPD primary operation; low M&M
Role of RT?	None	Well studied: adjuvant hemithoracic RT feasible, improves local control
Effective systemic therapy / multimodality therapy	None	Cis-pem and ipi-nivo standard Rx, with modest OS benefits; chemo + surgery feasible

Advancing Innovative Therapies for Cancers That Invade the Peritoneum and the Pleura

Typical appearance of MPM ??

Often described as:

- associated with SOB, chest pain
- universally fatal
- median OS 12 mos or less

CT appearance of MPM is related to tumor extent (and histology)

T2

Epithelioid MPM may have bulky but not invasive pleural masses; sarcomatoid MPM may be low volume but invasive into chest wall

T3 or T4

Initial presentations differ from those of other thoracic malignancies (e.g. NSCLC)

Sites of mediastinal nodal involvement different from those in lung cancer – often in areas not accessible by mediastinoscopy or EBUS Mediastinal nodal mets common, more so than hilar/ peribronchial nodes

M1(lung) Metastatic disease uncommon at presentation

* Most thoracic surgeons and med/ rad oncologists not familiar with nuances of MPM

Correlation of stage between cTNM (by CT) and p TNM IASLC Mesothelioma Staging Database

FDG PET in MPM Staging and Prognosis

- Unsuspected extrathoracic disease detected in 6/63 patients (10%):
 - M1: 2 patients (peritoneum and bone)
 - N3 (supraclavicular): 4 patients
- In subsequent analysis (n>100 patients), SUV >10 was independent prognostic indicator of poor survival (in patients managed surgically)

Flores, Rusch et al. JTCVS 2003;126: 11-16

Figure 5. Overall survival by SUV and histology. *SUV*, Standard uptake value.

Flores, Rusch et al. JTCVS 2006;132:763-768.

VolCT in Staging MPM: <u>Study Schema</u>

VolCT for Staging MPM *Tumor volume predicts OS*

Best separation forOS isby 3 groups:

 $Q1 = 91.2 cm^3$

Q2 /Q3 (median)=245.35cm³

 $Q4 = 511.35 \text{ cm}^3$

MRI tumor volume segmentation in MPM predicts OS

-

--- ≥400cm³

All patients (n=31)

Log-rank for trend

p=0.0232

--- >250 - 400cm³ (n = 14)

(n = 11)

Armato et al. Lung Cancer 2022; 164:76-83

В

А

The "low tech" approach to assessing pleural tumor volume: Pleural thickness measurements

Exploratory analyses of IASLC database for 8th edition of MPM staging system

Maximum Thickness of Three Levels With Best Cutpoint - M0 Any N

N = 472 MO cases

Months

Max (mm)	Events / N	MST	24 Month	60 Month
<5.1	47 / 81	24.2	51%	22%
>=5.1	259 / 391	17.7	39%	8%

Sum (mm)	Events / N	MST	24 Month	60 Month
<13	56 / 98	26.3	55%	20%
13-60	190 / 296	18.5	40%	9%
60+	60 / 78	11.5	30%	5%

By either method, increasing pleural thickness is associated with increasing frequency of (+) lymph nodes (range of 13.5 to 47.4%)

Nowak et al JTO 2016;11(12A): 2089-2099

MALIGNANT PLEURAL MESOTHELIOMA Staging Methods

- CT scan (chest + upper abdomen)
 - Standard imaging study
- MRI (chest, abdomen, brain)
 - Some prefer for assessing chest wall / diaphragm invasion
- > PET / CT
 - detects metastases not seen on CT or MRI (~ 10% patients)
 - SUV is prognostic
- Mediastinoscopy / EBUS
 - Identifies some but not all N1 / N2 disease
- Laparoscopy
 - Identifies peritoneal disease in ~ 10% patients

<u>Stage Groupings for the AJCC / UICC 8th edition of MPM staging system</u>

	N0		N1/2 (<u>new N1</u>)		N3 (<u>new N2)</u>	
	v7 v8		v7 v8		v7	v8
T1	I (A B)	IA			IV	IIIB
T2	II	IB			IV	IIIB
Т3	II	IB	III	IIIA	IV	IIIB
Т4	IV	IIIB	IV	IIIB	IV	IIIB
M1	IV	IV	IV	IV	IV	IV

- T1a and T1b consolidated into T1
- ► All ipsilateral LN now N1
- ➢All contralateral and supraclav LN

now N2

Major changes in stage groupings, including creation of IIIA, IIIB

Best Stage

Rusch et al. JTO 2016; 11(12): 2112-2119

Supplementary Prognostic Variables Based on analyses of IASLC database

>3 models depending on extent of available information

(1) Clinical + surg /path stage info:

- Path stage, histology, sex, age, type of surgery, adjuvant treatment, WBC, platelet count
- (2) No surgical staging info:
 - Clinical stage, histology, sex, age, type of surgery, adjuvant treatment, WBC, Hgb, platelet count
- (3) Limited clinical info:
 - Histology, sex, age, WBC, Hgb, platelet count

Pass et al JTO 2014; 9:856-864

Surgical Definitions

 Parietal and visceral pleurectomy with en bloc lymph node dissection +/-resection of diaphragm and pericardium

- Parietal and visceral pleurectomy
- ►<u>EPD</u>
 - Parietal and visceral pleurectomy with resection of diaphragm and / or pericardium

IASLC Definitions: Rice, D et al JTO 2011;6:1304-1312

EPP vs P/D for MPM: 663 Patients Overall Survival

In MVA, HR for EPP = 1.4, controlling for stage, histology, gender and multimodality therapy

<u>Corroborated by MDACC retrospective study of</u> <u>similar design: Zhou et al ATS 2022;113:200-8</u>

- 2 institution study: MSKCC & NYU
- Mortality: EPP (7%), P/D (4%)

Flores al. J Thorac Cardiovasc Surg 2008; 135:620-626.

EPP vs no EPP for MPM: MARS 1 Trial

Feasibility of EPP surgery and radical radiotherapy treatment

Treasure al. Lancet Oncol 2011; 12:763-72.

IASLC MPM Staging Database: Analyses by Stage and Surgical Procedure

Rusch et al. JTO 2012; 7:1631-39

Does surgery (EPD) in addition to chemoRx benefit OS? MARS2 trial (UK)

Endpoints:

- OS
- QOL
- Cost effectiveness

- Completed accrual as planned (despite COVID) with last randomization Jan 2021
- 335 randomized patients
- Currently awaiting analysis

TABLE 2. Site of first recurrence after extrapleural pneumonectomy versus pleurectomy/decortication								
EPP (n = 219) n (%) P/D (n = 133) n (%)								
Local recurrences	73 (33%) 68 (31%)	86 (65%) 84 (63%)						
Pericardium	5 (2%)	2 (2%)						
Distant recurrences	146 (66%)	47 (35%)						
Contralateral lung/pleura	49 (22%)	14 (11%)						
Peritoneum	57 (26%)	24 (18%)						
Peritoneum + chest	17 (8%)	1						
Abdominal viscera	12 (5%)	4 (3%)						
Bone	7 (3%)	_						
Brain	1	1						
Cutaneous (distant)	1	1						
Other	2	2 (2%)						

EPP, Extrapleural pneumonectomy; P/D, pleurectomy/decortication.

Flores RM et al. J Thorac Cardiovasc Surg 2008;135:620-626.

MALIGNANT MESOTHELIOMA MSKCC Trial (Surgery + RT)

1993-98: 88 patients entered

62 tumors resected by EPP

- Adjuvant RT (54Gy) given to 57 patients
 Well tolerated except 1 esophageal fistula
- **Relapse sites:** locoregional = 1

locoregional + distant = 6

• Median survival: 33.8 months, Stages I+II

10 months, Stages III+IV

Rusch et al. JThCvS 2001;122:788-795

Selected Combined Modality Therapy Studies (Induction chemotherapy + EPP +/- RT)

Study	pN2	Drug Regimen	EPP	Response Rate (%)	Adjuvant XRT	Median OS, Months
Krug * (n=75)	34	C+P	50	29.3	42	16.6
Weder (n=19)	0	C+G	16	32	13	23
Flores (n=21)	7	C+G	8	26	8	19
Weder * (n=61)	14	C+G	37	NR	36	19.8
Rea (n=21)	5	C+G	17	33	15	25.5

C=cisplatin; G=gemcitabine; P=pemetrexed * = multicenter trials

Tsao et al. Clin Lung Cancer 2009;10(1):36-41.

EPP + hyperthermic intracavitary cisplatin for MPM (n=96): Survival Estimates

Hospital mortality: 4.3% Grade 3-4 AE: 49% Median OS: 12.8 mos Recurrence: ipsilateral chest 34% abdomen 51%

> Tilleman et al (BWH). JTCVS 2009; 138:405-411

Selected Intrapleural Chemotherapy Trials

Study	N2 or Nx	Intra Chemo	Surg Type	Peri-op Mortal. %	Adjuvant Systemic Chemo	Adjuvant RT	Median OS, Months	3-Yr OS
Rusch (n=36)	16	C+M	P/D	3.7	C+M	None	18.3	40%
Lee (n=15)	0	C+CA	P/D	0	46%	73%	11.5	7%
Colleoni (n=20)	2	C+CA	P/D	0	E+M	None	11.5	NR
Rice (n=19)	5	C+M	P/D EPP	5	С	None	13	17%

C=cisplatin; CA=cytosine arabinoside M=mitomycin; E=epirubicin

Tsao et al. *Clin Lung Cancer* 2009;10(1):36-41.

Intrapleural Cisplatin and Mitomycin for MPM s/p EPD: Pleural and Plasma Elimination Curves

Total and Free Cisplatin

Mitomycin

Rusch et al. J Clin Oncol 1992;10:1001-1006.

Cisplatin concentration in lung tissue after hyperthermic exposure: Estimation of platinum concentration

> Ried et al. *Eur J Cardio-Thorac Surg 2015*; 47:563-566.

Intracavitary cisplatin-fibrin chemo after EPD for MPM (Phase I, dose escalation, n=12) After EPP, cisplatin-fibrin was applied on the thoracic wall and the lung surface.

40 **Toxicity** limit AUC_{0-24h} (h*µg/g) Serum cisplatin 30 (Rover, Cancer Serum cisplatin Chemother P/D kinetics 20 Pharmacol 2008) 10 Median time to max serum **Tissue biopsies** <u>concentration = 2 hrs</u> collected at 90 min 22 11 33 44 after spraying Dose (mg/m² BSA) AUC_{0-24h} without predose concentration (µg/g) 150 **Tissue cisplatin** AUC_{0-24h} with predose 100 90 day mortality = 050 9 serious AE, none study related At 90 min High chest wall concentrations Cytotoxic contration Median OS 21 mos 0 90 0 90 0 90 0 90 Minutes after administration • 11 mg/m²BSA A 33 mg/m²BSA Opitz et al. J Thorac Cardiovasc Surg 22 mg/m²BSA 44 mg/m²BSA

2020; 159:330-340.

Phase II trial hemithoracic intensity modulated pleural RT (IMPRINT) as part of lung sparing multimodality therapy in MPM

45 patients enrolled
 cis or carbo + pem (2-4 cycles)

21 pts: P/D or EPD27 pts. treated with IMPRINT

No grade 4-5 toxicities
 12 pts. grade 2-3 pneumonitis, resolved with steroids

Median PFS 12.4 mosMedian OS 23.7 mos

2 yr. OS 59% for resectable tumors
2 yr. OS 25% for unresectable

Rimner et al (MSKCC, MDACC) JCO 2016; 34:2761-2768

MULTIMODALITY THERAPY in MPM Options: Summary

EPP + hemithoracic RT

 excellent local control; suitable for selected patients; high risk of systemic relapse in stage III

EPD + IMRT

Promising, awaiting further validation

EPP or EPD + intrapleural +/- systemic chemoRx

poor local control; ?? Impact on survival; investigational

ChemoRx (pre or postop) + surgery +/- RT

feasible; may improve OS especially stages II / III

MPM Unmet Needs

Summary

- Significant advances in pre-treatment evaluation and patient selection
 Clinical staging still cumbersome and relatively imprecise
- Some insights into MPM tumor biology
 Still no targetable molecular alterations
- Improving TNM staging system

 A work in progress; recommendations for 9th edition staging system forthcoming

EPD has largely supplanted EPP as method of surgical resection
 MARS2 RCT results may soon provide definitive information about role of surgery

MPM Unmet Needs

Summary

Some advances in both systemic therapies and RT modalities

Dual agent IO an important addition, needs further study

o IMPRINT feasible after MCR, may improve local control, needs further study

Multimodality therapy (chemo + surgery +/- RT) feasible

 \odot Many the rapeutic combinations tested

Best treatment sequence still undefined

Therapeutic benefits appear real but still modest

Still lots of room for very novel therapies in this disease

35