

Triple Negative Breast Cancer Update: From Immunotherapy to Antibody-drug Conjugates

Yuan Yuan, MD, PhD Direct Breast Cancer Research Medical Director Breast Oncology

Cedars-Sinai Cancer

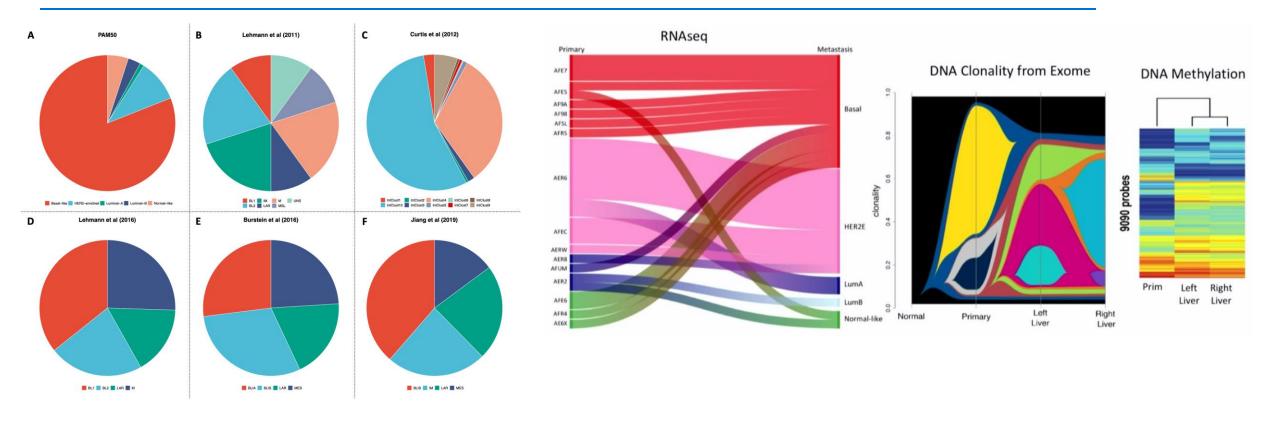
Disclosures

- Grant/Research Support from Imugene, and Merck.
- Consultant for Gilead Sciences and Novartis.
- On the Speakers Bureau for AstraZeneca, Daiichi-Sankyo, Eisai, Gilead Sciences, and Merck.

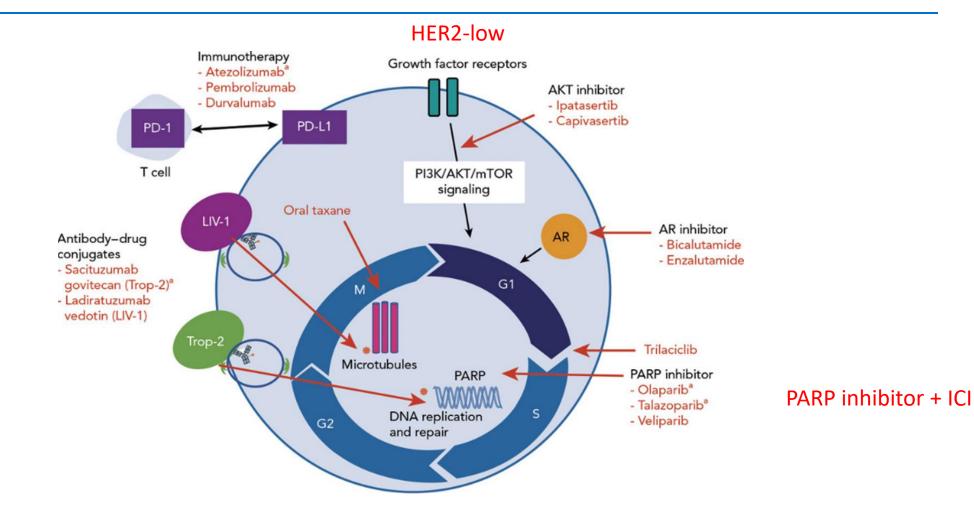
This presentation and/or comments will be free of any bias toward or promotion of the above referenced companies or their product(s) and/or other business interests.

This presentation and/or comments will provide a balanced, non-promotional, and evidence-based approach to all diagnostic, therapeutic and/or research related content.

This presentation has been peer-reviewed and no conflicts were noted.


- Overview of triple negative breast cancer (TNBC)
- Role of Immune Checkpoint Inhibitors
- Role of PARP inhibitors
- Antibody Drug Conjugates (ADC)
- HER2 low BC
- Other emerging therapy: AR, AKT inhibitor

Triple Negative Breast Cancer (TNBC)

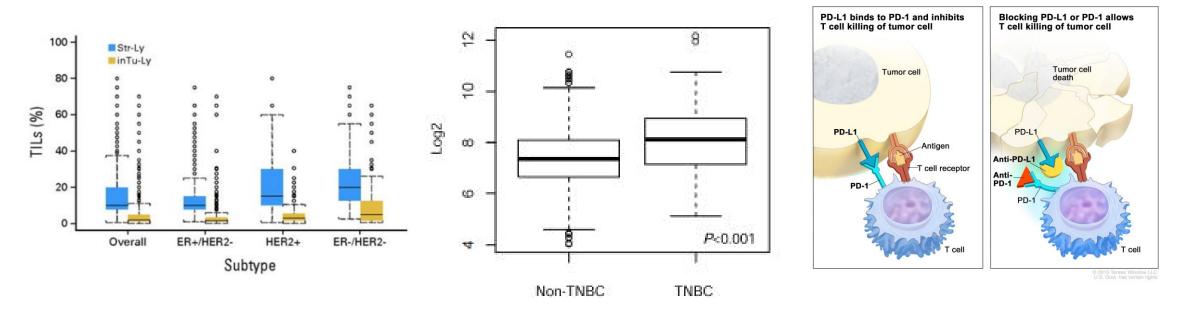

- Defined by lack of ER/PR/HER2 receptors
- 15 -20% of all invasive breast cancers
- More common in younger women, AA and Hispanic ethnicity
- Most common type seen in women with BRCA
- Significantly more aggressive: visceral and brain metastasis
- Lack of effective therapy
- Medium survival in mTNBC:
 - OS 15-18 month
 - 5y OS 12% per SEER database

TNBC Tumor Biology: Molecular Heterogeneity and Tumor Evolution

Marra et al NPJ Breast 2020

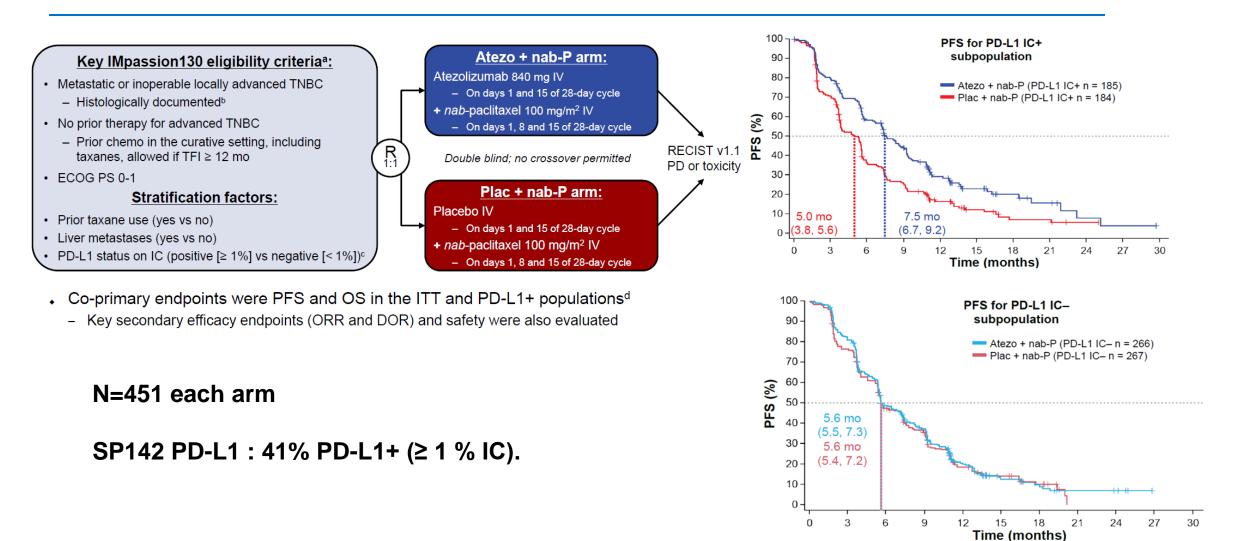
Targets for mTNBC Therapy

Overview of mTNBC Treatment


- NCCN recommends either anthracyclines or taxanes as preferred first-line options for patients who did not receive these agents previously
- Pembrolizumab for PD-L1+TNBC (22C3 Ab) in 1L
- PARP inhibitors for DNA Repair Defect in 2L+
- Trop-2-targeted ADC, sacituzumab govitecan, is approved 2+L setting
- Tumor Agnostic approval of pembrolizumab: In patients with high levels of microsatellite instability (MSI), deficient mismatch repair (dMMR), or high tumor mutational burden (TMB), pembrolizumab is approved as monotherapy

TNBC: more immuno-responsive

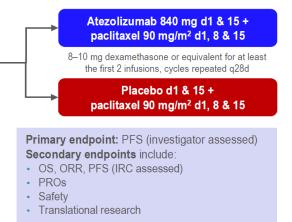
Tumor Infiltrating Lymphocytes¹



Loi. JCO. 2013 Mittendorf. Cancer Immunol Res. 2014 Cancer.gov

IMpassion130: Atezolizumab 1st line TNBC

犹 Cityof Hope.

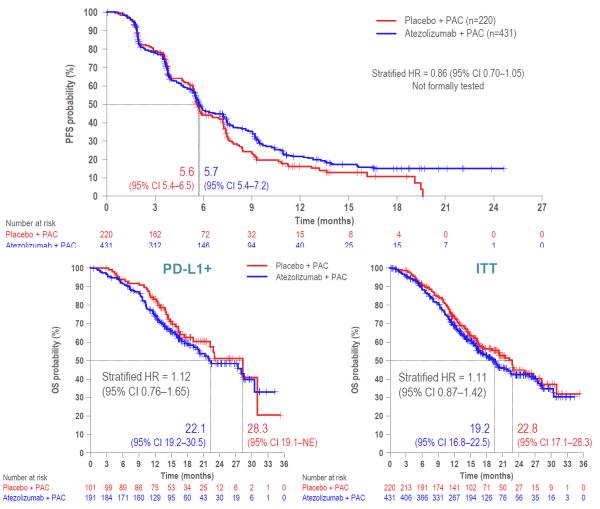

Schmid P et ESMO 2018

IMpassion131: Atezolizumab+ Paclitaxel 1st line TNBC

- Metastatic or unresectable locally advanced TNBC
- No prior chemotherapy or targeted therapy for advanced TNBC
- Previous eBC treatment completed ≥12 months before randomisation
- Taxane eligible
- Measurable disease
- ECOG PS 0/1

Stratification:

- Prior taxane (yes vs no)
- Tumour PD-L1 status (IC <1% vs ≥1%)ª
- Liver metastases (yes vs no)
- Geographical region (N America vs W Europe/Australia vs E Europe/Asia Pacific vs S America)



aPD-L1 IC: area of PD-L1-stained tumour-infiltrating ICs as a percentage of tumour area by VENTANA SP142 immunohistochemistry assay. eBC = early breast cancer; ECOG PS = Eastern Cooperative Oncology Group performance status; IC = immune cell; IRC = independent review committee; ORR = objective response rate; PRO = patient-reported outcome; q28d = every 28 days; R = randomisation

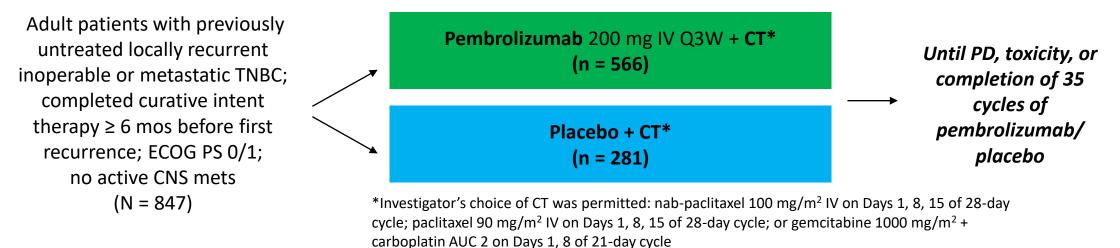
R

2:1

- The primary objective of IMpassion131 was not met: addition of atezolizumab to paclitaxel did not significantly improve PFS in patients with PD-L1positive metastatic TNBC
- There was no evidence of an OS benefit (secondary endpoint) with the addition of atezolizumab to paclitaxel
- Potential reasons for the contrast with the benefit seen in IMpassion130 requires further exploration
 Cityof Hope.

Median duration of follow-up: 14.5 months (placebo + PAC) vs 14.1 months (atezolizumab + PAC) in the ITT population

Miles D ESMO 2020


Morpheus TNBC

KEYNOTE-355: Study Design

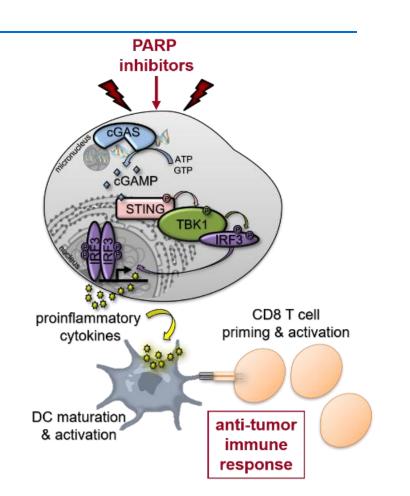
- Randomized, double-blind, multicenter phase III trial
 - Current analysis reports PFS by CT regimen and key secondary endpoints

Stratified by CT (taxane vs gemcitabine/carboplatin); PD-L1 tumor expression (CPS > 1 vs < 1); previous Tx with same class of CT for EBC (yes vs no)

- Primary endpoints: PFS and OS (in PD-L1 CPS ≥ 10, PD-L1 CPS ≥ 1, and ITT)
- Secondary endpoints: ORR, DoR, DCR, safety

KEYNOTE-355: Pembrolizumab in 1st Line metastatic TNBC:

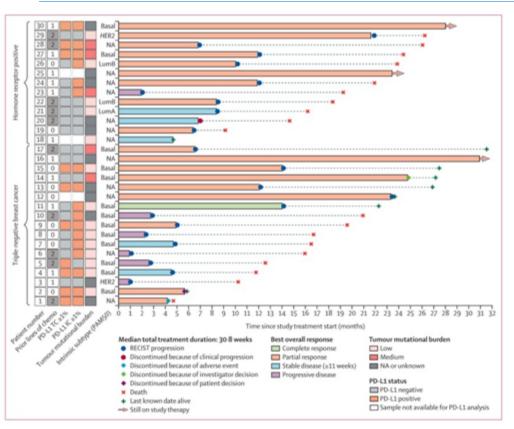
 First-line pembrolizumab + CT improved PFS in patients with PD-L1 positive (CPS ≥ 10) metastatic TNBC: 9.7 vs 5.6 mo in PD-L1>10% goup

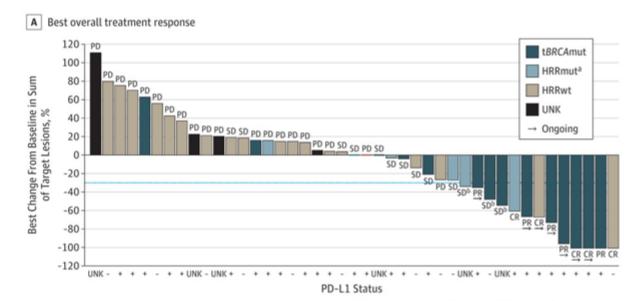

FS	Pembrolizumab + CT	Placebo + CT	HR (95% CI)
PD-L1 CPS ≥10	(n = 220)	(n = 103)	0.66 (0.50-0.88)
■ Median PFS, mo	9.7	5.6	
■ 12-mo PFS, %	39.1	23.0	
PD-L1 CPS ≥1	(n = 425)	(n = 211)	0.75 (0.62-0.91)
■ Median PFS, mo	7.6	5.6	
■ 12-mo PFS, %	31.7	19.4	
ITT population	(n = 566)	(n = 281)	0.82 (0.70-0.98)
Median PFS, mo	7.5	5.6	
12-mo PFS, %	29.3	20.8	

- OS update : Pembro plus chemo significantly prolonged OS and PFS in patients with PD-L1–positive (CPS ≥10) metastatic TNBC
 - Median OS with PD-L1 CPS ≥10: 23.0 mo vs 16.1 mo without pembrolizumab
 - Median PFS with PD-L1 CPS ≥10: 9.7 mo vs 5.6 mo without pembrolizumab

🕅 Cityof Hope.

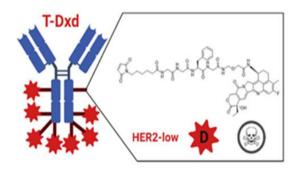
PARP Inhibitors May Activate Immune Responses


- PARP inhibitors may activate the cGAS/STING (stimulator of interferon genes) pathway
 - ↑ proinflammatory cytokines
 - 1 Ag presentation
 - ↑ PD-L1 expression
- PARPi + ICI synergistic


Huang J et al. Biochem Biophys Res Commun 2015 Jiao S et al. Clin Cancer Res 2017 Sato H et al. Nat Commun 2017 Pantelidou C et al. Cancer Discov 2019

Combination of PARPi and Immune Checkpoint inhibitor

Combination of *olaparib* and *durvalumab* (MEDIOLA trial) showed promising antitumor activity in patients with germline BRCA-mutated metastatic breast cancer

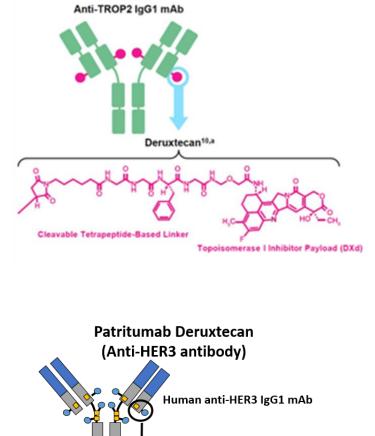

Combination *niraparib* plus *pembrolizumab* (TOPACIO trial) provides promising antitumor activity in patients with advanced or metastatic TNBC, with numerically higher response rates in those with tumor *BRCA* mutations

> Domchek SM et al Lancet 2020 Vinayak et al JAMA Oncology 2019

犹 Cityof Hope.

Novel ADCs in TNBC

- Trastuzumab Deruxtecan (T-DXd) •
- Trop2 ADC: •
 - Sacituzumab Govitecan (SG)
 - Datopotamab Deruxtecan (Dato-Dxd)
- HER3 ADC (Patritumab) •


SN-38 Payload

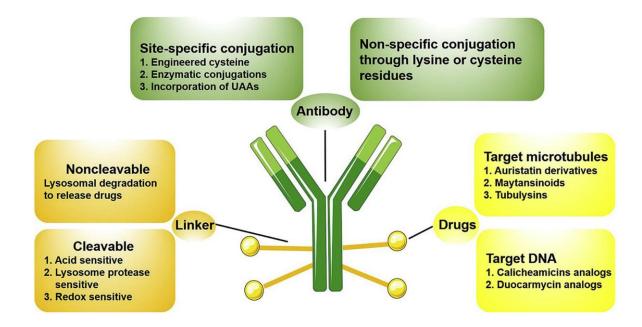
- Delivers 136-fold more than parent compound irinotecan
- Unique chemistry improves solubility, selectively delivers 🧲 SN-38 to tumor

Target Antigen: HER2 (trastuzumab vehicle) mAb isotype: lgG1 Linker type: cleavable Payload (class): Dxd (Camptothecin) Payload action: Topoisomerase-1 inhibitor **DAR:** 8

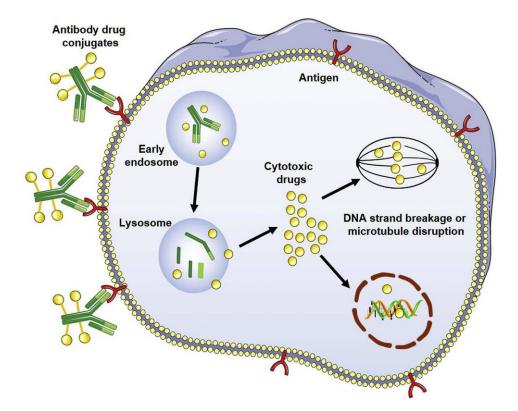
Linker for SN-38

- High drug-to-antibody ratio (7.6:1)
- pH-sensitive linker for rapid release of payload at or inside tumor

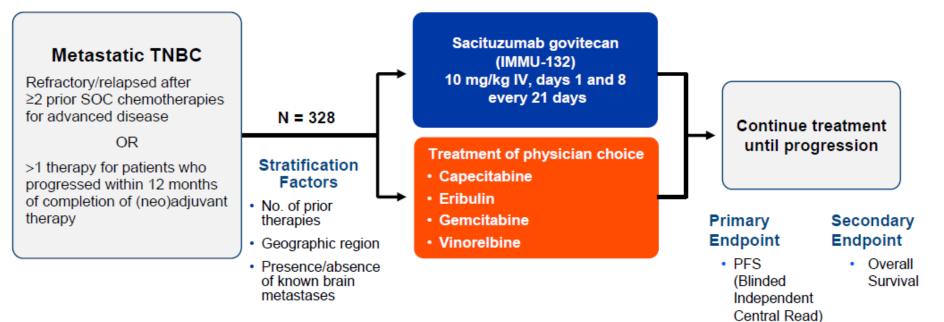
Conjugation chemistry: Drug-linker conjugated to Cysteine residue cysteine residues of mAb Drug linker 0 Cleavable Tetrapeptide-Based Linker CH₃ F Topoisomerase I Inhibitor Payload (DXd)


- Humanized Anti-TROP2 Antibody
- Antibody type: hRS7 IgG1κ

16

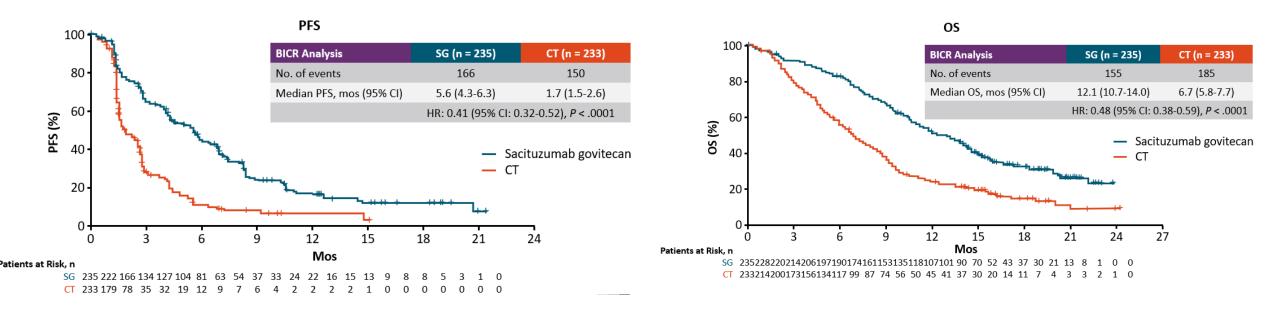

Datopotamab Deruxtecan

Humanized


Antibody Drug Conjugates

- Ado-trastuzumab emtansine (T-DM1)
- Fam-trastuzumab deruxtecan (DS-8201)
- Sacituzumab govitecan (IMMU-132)
- Patritumab

Phase III ASCENT Trial

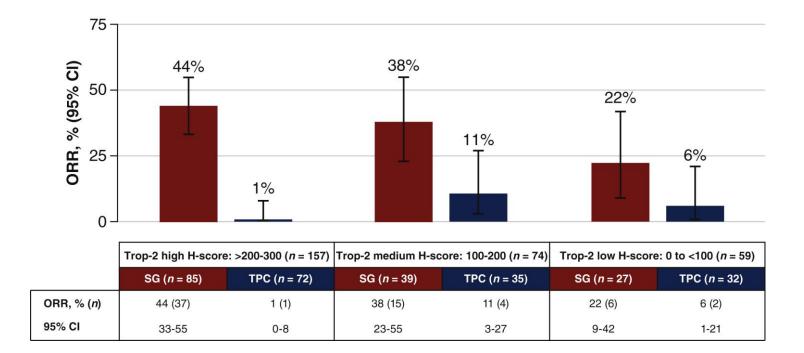

Clinical trials number: NCT02574455

City of Hope.

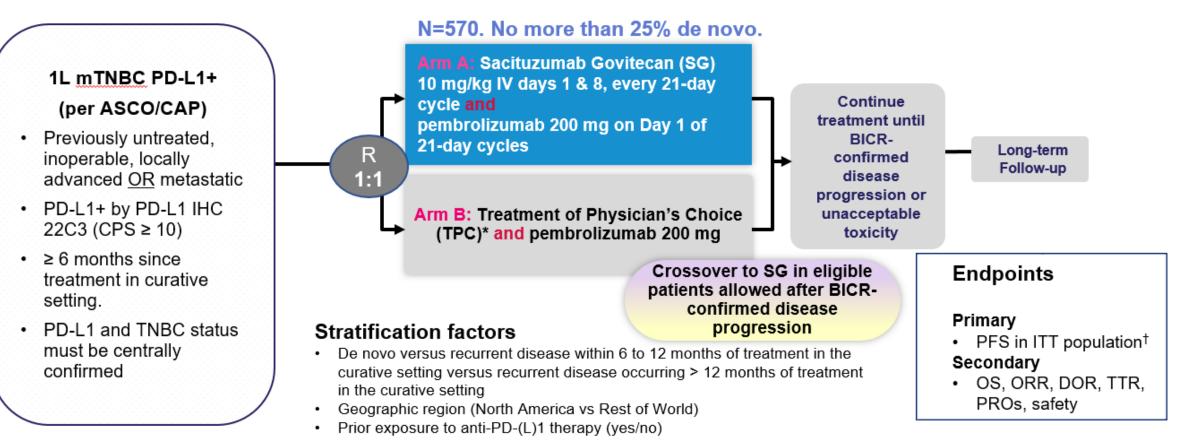
	Sacituzumab Govitecan (n = 235)	Physician's Choice CT (n = 233)
ORR, n (%)	82 (35)	11 (5)
P value	.00. >	001
CR, n (%)	10 (4)	2 (1)
PR, n (%)	72 (31)	9 (4)
CBR, n (%)	105 (45)	20 (9)
P value	.00. >	001
Median DOR, mos	6.3	3.6
P value	.05	57

Bardia et al ESMO 2020

Phase III ASCENT Trial

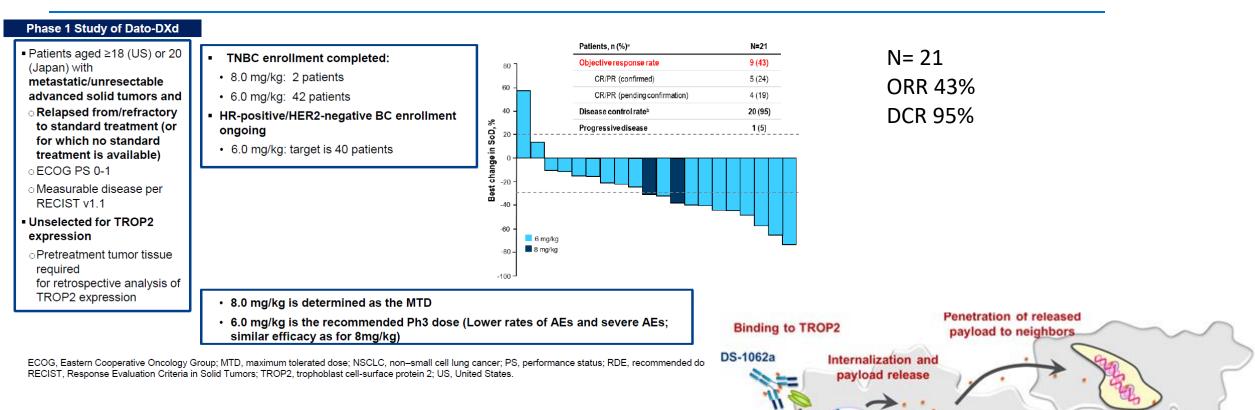


PFS was 5.6 months (95% confidence interval [CI], 4.3 to 6.3; 166 events) with sacituzumab govitecan and 1.7 months with chemo


The median overall survival was 12.1 months (95% CI, 10.7 to 14.0) with sacituzumab govitecan and 6.7 months (95% CI, 5.8 to 7.7) with chemotherapy (hazard ratio for death, 0.48; 95% CI, 0.38 to 0.59; P<0.001).

Bardia et al ESMO 2020

ORR by TROP-2 IHC Expression in ASCENT Study of Sacituzumab


ASCENT 04: PD-L1+ TNBC, 1st line

*TPC: gemcitabine 1000 mg/m2 plus carboplatin AUC 2 on Days 1 and 8 of a 21-day cycle, or paclitaxel 90 mg/m2 on Days 1, 8, and 15 of a 28-day cycle, or nab-Paclitaxel 100 mg/m2 on Days 1, 8, and 15 of a 28-day cycle.

[†]PFS measured by blinded independent central review who will assess tumor response using RECIST 1.1 criteria. BICR=blinded independent central review CPS=combined positive score; DOR=duration of response; IV,=intravenous; ITT=intent to treat; mTNBC=metastatic triple-negative breast cancer; ORR=objective response rate; OS=overall survival; PD-L1=programmed cell death ligand 1; PFS=progression-free survival; PRO=patientreported outcomes: R=randomization: RECIST=Response Evaluation Criteria in Solid Tumors: TTR: time to response

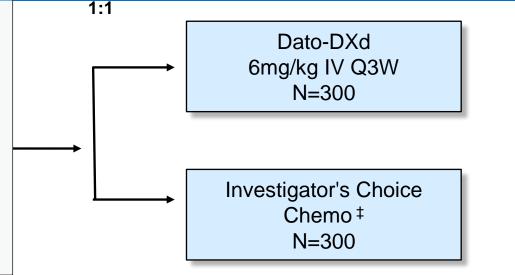
Dato-DXd: TROPION-PanTumor01

TROP

Cancer cell

Bardia et al ESMO Breast Cancer irtual Congress 2021

Nucleus


Topoisomerase I inhibition and DNA damage Neighboring cancer cell

Cell death

TROPIONBreast02

Key Eligibility Criteria

- Locally recurrent inoperable or metastatic TNBC
- No prior chemotherapy or targeted systemic therapy for metastatic breast cancer
- Not candidate for PD-1/PD-L1 inhibitor therapy[†]
- Measurable disease as defined by RECIST v1.1
- Mandatory tumor sample ≤ 3 months old*
- ECOG PS 0 or 1
- Adequate hematologic and end-organ function

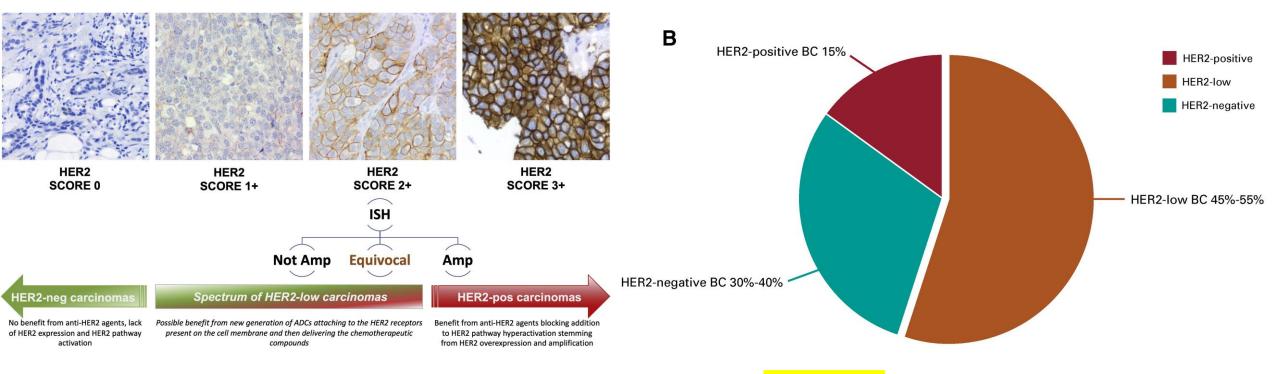
Dual primary endpoints PFS (BICR), OS

Secondary endpoints PFS (inv), ORR, DoR, TTD, DCR, PRO, Safety, Tolerability, PK, and Immunogenicity

Exploratory endpoints TROP2, PD-L1

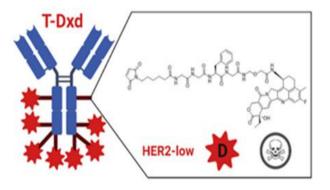
Stratification factors:

- Geographic location (US/Canada/EU vs rest of world)
- DFI^{**} (de novo vs prior DFI≤12 mo vs prior DFI>12 mo)
- PD-L1 status (positive vs negative)


Response assessment: Scan Q6W for 48 weeks, then Q9W thereafter *until RECIST1.1* disease progression (as assessed by Investigator), regardless of study intervention discontinuation or start of subsequent anticancer therapy. Following disease progression, 1 additional follow-up scan should be performed as per Imaging schedule (i.e., either 6 weeks or 9 weeks later).

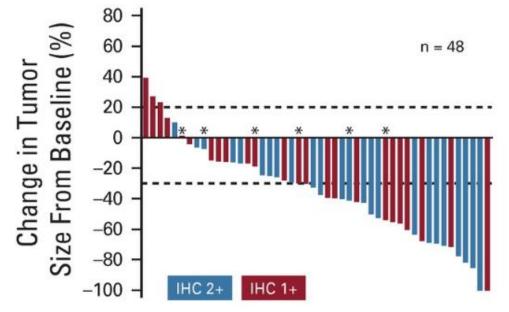
Ongoing trials for ADCs in mTNBC

Register number (target accrual, N)	Design; arms and regimen	Study population	Primary outcome	Status
SGN-LIV1A			1	
NCT03310957 N = 122	Phase I/II, single arm; SGN-LIV1A plus pembrolizumab	Metastatic TNBC	ORR, incidence of AEs and DLT	Accruing
NCT01969643 N = 418	Phase I dose escalation and dose expansion; different cohorts will receive SGN-LIV1A monotherapy or in combination with trastuzumab	Metastatic TNBC and HER2-positive	Incidence of AEs	Accruing
Morpheus-TNBC NCT03424005 N = 280	Phase Ib/II, open label, randomizing to several cohorts, including one of atezolizumab plus sacituzumab govitecan	Metastatic TNBC	ORR, frequency of AEs	Accruing
Trastuzumab duoca	rmazine			
TULIP NCT03262935 <i>N</i> = 436	Phase III; open label, randomizing to one of two arms: trastuzumab duocarmazine vs. TPC	HER2-positive, refractory to at least two lines of CT for MBC	PFS	Completed; results pending
NCT04235101 N = 436	Phase I, single arm; trastuzumab duocarmazine plus niraparib	HER2-positive or HER2-low tumors for which no standard therapy exists	Frequency of AEs	Accruing
NCT04602117 N = 27	Phase I, single arm; trastuzumab duocarmazine plus paclitaxel	HER2-positive or HER2-low tumors for which no standard therapy exists	Frequency of AEs	Not recruiting yet
Disitamab vedotin (RC48-ADC)			
NCT04400695 N = 366	Phase III; open label, randomizing to one of two arms: trastuzumab duocarmazine vs. TPC	HER2-low breast cancer; one to two prior lines of treatment in the advanced setting. Prior treatment with anthracyclines	To assess efficacy (PFS) of ADC vs. control arm	Not recruiting yet
NCT03500380 N = 228	Randomized phase II (vs. lapatinib plus capecitabine)	HER2-positive breast cancer; prior treatment with trastuzumab; one to two prior lines of treatment in the advanced setting	To assess efficacy (PFS) of ADC vs. control arm	Accruing; no results to date


HER2 low tumor: 1+ or 2+ by IHC, ISH neg

• HER2-low tumor accounts for approx. 45-55% of all MBCs, 60% of HR+HER- MBC ; 30% of TNBCs

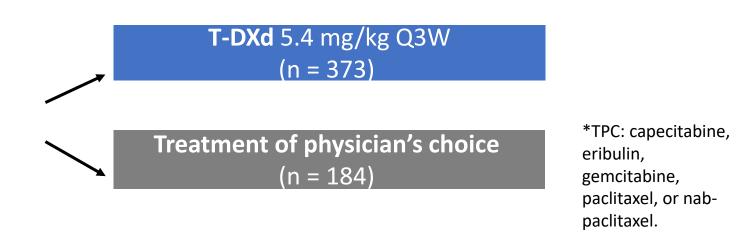
Marchio et al Seminars in Cancer Biology 2021 Tarantino et al JCO 2020 Agostinetto et al Cancers 2021


Trastuzumab Deruxtecan (T-DXd) Phase Ib Study (N=51): HER2-Low Tumors

Target Antigen: HER2 (trastuzumab vehicle) mAb isotype: lgG1 Linker type: cleavable Payload (class): Dxd (Camptothecin) Payload action: Topoisomerase-1 inhibitor DAR: 8

T-Dxd showed efficacy in HER-low tumor

- ORR of 44%
- DCR of 85%
- PFS 12.9 mon



	Confirmed ORR, % (n)	mDoR, mo	mPFS, mo
All (N = 51)	44.2 (43)	9.4	7.6
IHC 2+ (n = 24)	54.5 (22)	11.0	13.6
IHC 1+ (n = 27)	33.3 (21)	7.9	5.7
HR+ (n = 45)	47.4 (38)	11.0	7.9
Prior CDK4/6 inhibitor (n = 15)	33.3 (12)	NR	7.1

Modi. SABCS 2018. P6-17.02. Modi. J Clin Oncol. 2020;38:1887 Marchio et al Seminars in Cancer Biology 2021

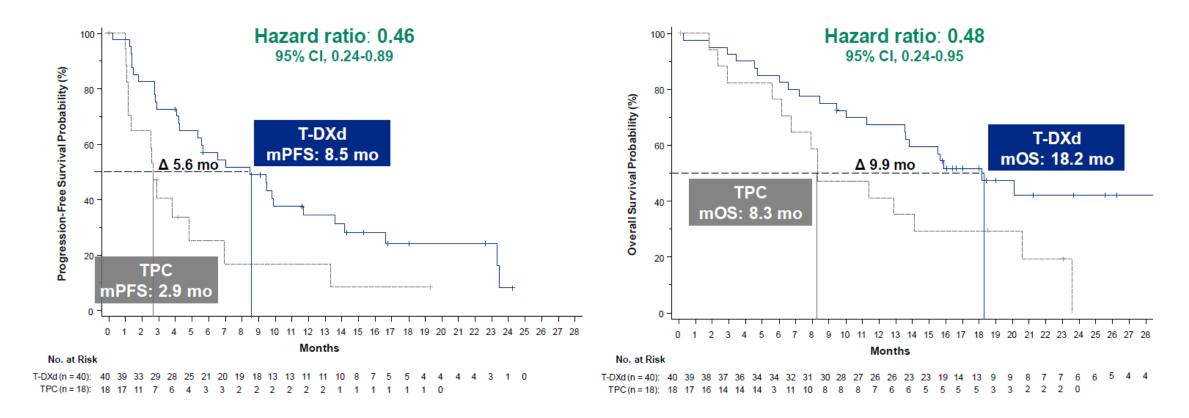
DESTINY-Breast04: Phase III Study of Trastuzumab Deruxtecan (T-DXd) vs TPC for HER2-Low MBC

- HER2-low (IHC1+ or IHC2+/ISH-) MBC
- 1-2 prior chemo in the metastatic setting or recurrence ≤6 mo after adjuvant CT;
- ≥1 ET if HR-positive;
- Treated, stable brain metastases eligible (N = 557)

Efficacy in All Patients (HR+ and HR-)

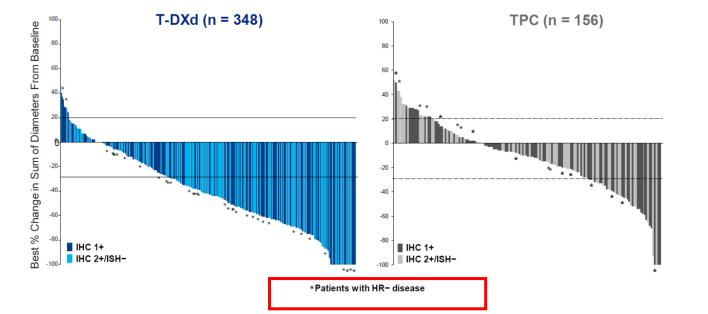
Progression-Free Survival

Hazard ratio: 0.50, *P* < 0.0001


DB04 established HER2-low MBC as a new targetable population

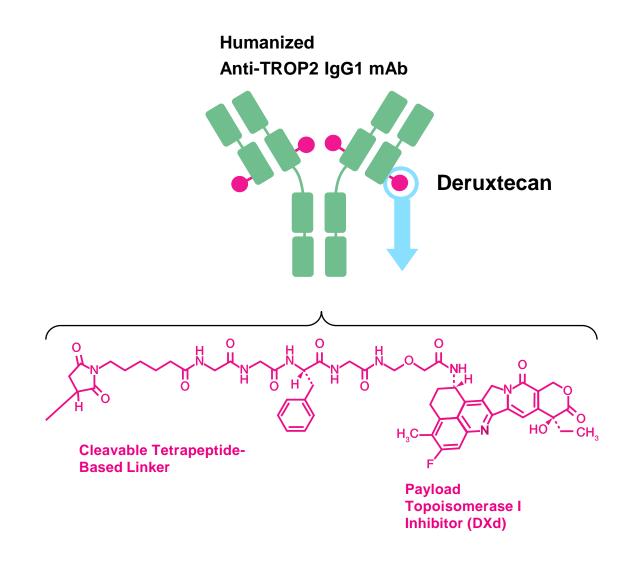
DB04: PFS and OS in HR- (TNBC, N=58): Exploratory Endpoints

PFS


OS

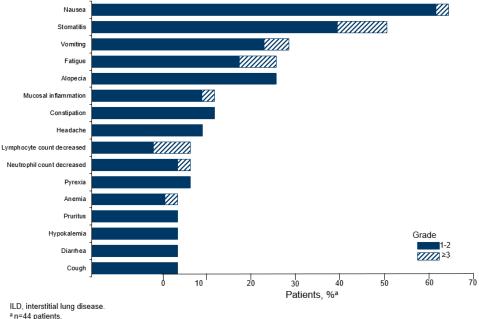
DB04: Confirmed ORR in HR+ and TNBC

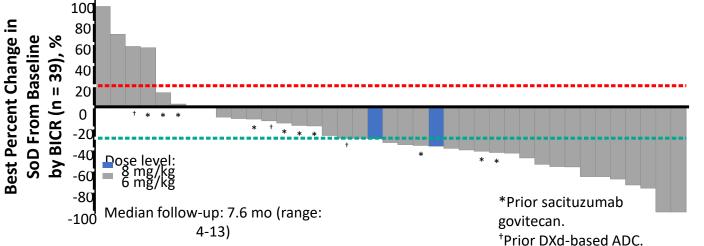
- DB04 TNBC cohort showed impressive ORR, PFS and OS data
- Limited number of patient, N=58 only
- 8/9/22 FDA approval of T-DXd in HER2 low



Modi. ASCO 2022. Abstr LBA3. Modi. NEJM. 2022

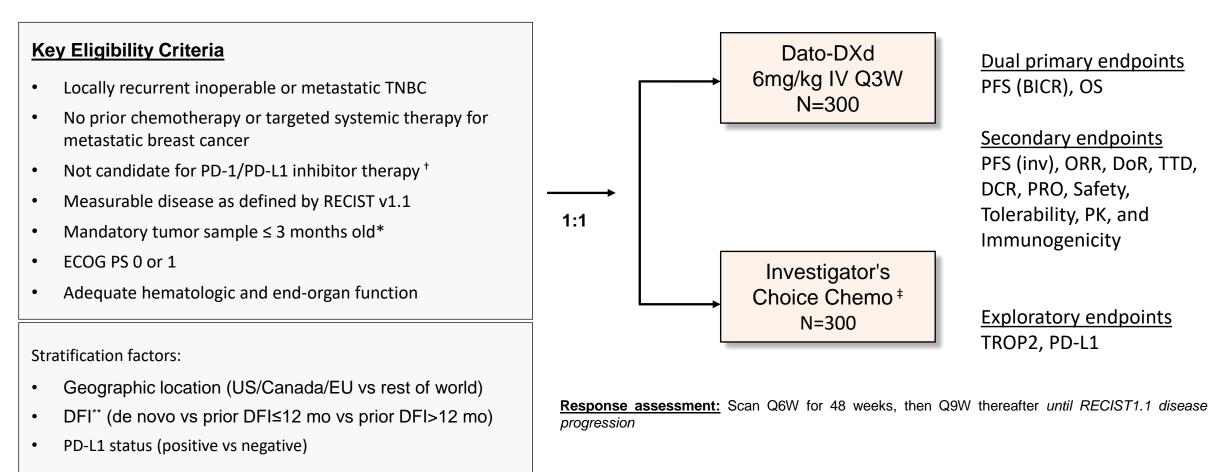
Dato-TXd


Dato-DXd is a TROP2-directed ADC designed with 3 components¹:


Antibody part: humanized anti-TROP2 IgG1 mAb Cytotoxic part: topoisomerase I inhibitor payload (Exatecan derivative, DXd); drug-to-antibody ratio ~4:1 Linker: tetrapeptide-based cleavable linker

TROPION-PanTumor01 Trial of Dato-DXd, ADC Targeting TROP2: TNBC Cohort

Patients, n (%)	All Patients (N = 44)
ORR	15 (34)
 CR/PR (confirmed) 	14 (32)
 CR/PR (pending confirmation) 	1 (2)
Non-CR/non-PD	3 (7)
 Stable disease 	17 (39)
 Not evaluable 	2 (5)
 Disease control rate 	34 (77)
■ PD	8 (18)

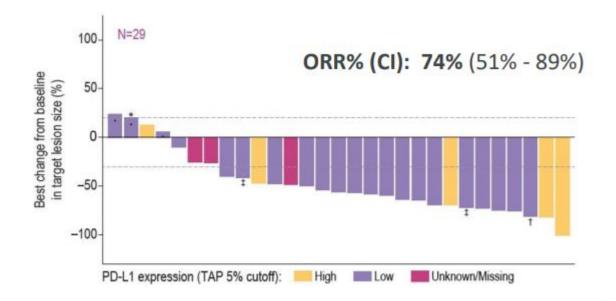


Confirmatory trial: Phase III TROPIONBreast02: DatoDxd vs TPC in TNBC

- Most common adverse events observed were nausea and stomatitis (predominantly grade 1-2)
- Low frequency of hematologic toxicity and diarrhea
- No cases adjudicated as drug-related ILD

Krop. SABCS 2021. Abstr GS1-05.

TropionBreast02:Dato-TXd vs TPC in 1st line mTNBC



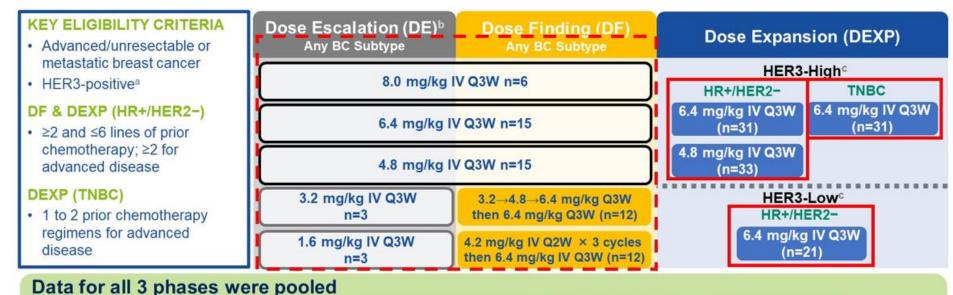
⁺ PD-L1 negative, previous PD-1/PD-L1 inhibitor therapy for early-stage breast cancer, comorbidities precluding PD-1/PD-L1 inhibitor therapy, or PD-L1 positive with no access to pembrolizumab (no regulatory approval in country); ‡ If no prior taxane or DFI >12 months, paclitaxel or nab-paclitaxel; If prior taxane and DFI ≤ 12 months: capecitabine, carboplatin, or eribulin; *An archival tumour specimen obtained before the diagnosis of locally recurrent inoperable or metastatic breast cancer may be submitted on a case-by-case basis, pending approval by the Global Study Team; ** DFI: time between completion of treatment with curative intent (either date of primary breast tumour surgery or date of last dose of systemic anti-cancer therapy [not including endocrine therapy], whichever occurred last) and the first documented local or distant disease recurrence (either by biopsy or imaging)

Dato-DXd + Durvalumab as first line TNBC therapy

BEGONIA Arm 7

(Dato-DXd + Imfinzi)

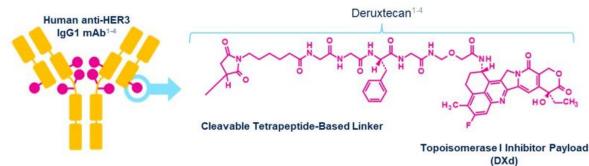
HER2-low/HER2-null tumour cells could have around five times more TROP2 receptors per cell versus HER2


N = 27, medial follow-up of 3.9 months (range, 2-6)

ORR 74% (95% CI, 54%-89%), 1 CR and 67% PR irrespective of PD-L1 expression.

Preliminary results of BEGONIA show that datopotamab deruxtecan plus durvalumab demonstrated a robust response rate in first-line locally advanced or metastatic TNBC in a biomarker-unselected population

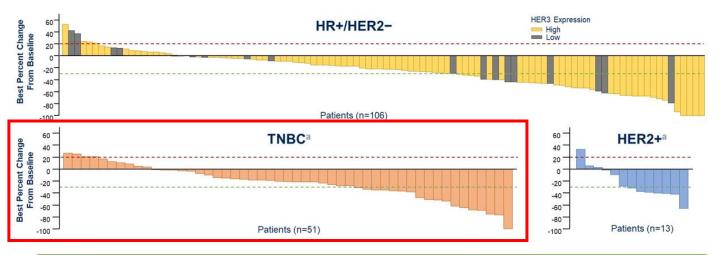
Patritumab Deruxtecan in HER3+ MBC: U31402-A-J101 Study


- HER3 overexpressed in 30-50% BC
- HER2-DXd, DAR8
- - HER3 + defined by IHC 2+ or 3+, over 25% membrane positivity for DE/DF cohort; over 10% for DEXP cohort

- Efficacy is reported by BC subtype: HR+/HER2- (n=113), TNBC (n=53), and HER2+ (n=14)
- Safety is reported for patients who received HER3-DXd 4.8 mg/kg (n=48), 6.4 mg/kg (n=98), and all patients (N=182^d)

DE, dose escalation; DEXP, dose expansion; DF, dose finding; EWOC, escalation with overdose control; HR, hormone receptor; IHC, immunohistochemistry; mCRM, modified continuous reassessment method; Q2W, once every 2 weeks; Q3W, once every 3 weeks; TNBC, triple-negative breast cancer.

a HER3 status was determined by IHC in archival tumor tissue (pre-treatment samples [<6 months prior to HER3-DXd treatment] were used for screening when archival tissue was not available); HER3-positive was defined as IHC 2+ and IHC 3+ for DE/DF cohorts and as ≥25% membrane positivity at 10x for DEXP cohorts. b Guided by mCRM with EWOC. c HER3-high was defined as ≥75% membrane positivity at 10x; HER3-des two patients with unknown BC subtype.


Patient Characteristics

		HR+/HER2- (n=113)	TNBC (n=53)	HER2+ (n=14)
		HER3-High and -Low ^a	HER3-High ^a	HER3-High ^a
Median age (range), years		55.0 (30-83)	59.0 (30-81)	58.0 (37-70)
Country %	Japan	70.8	86.8	100.0
Country, %	USA	29.2	13.2	0.0
ECOG PS, %	0	75.4	62.3	85.7
E000 F3, 70	1	24.6	37.7	14.3
	HER2-zero	34.5	35.8	0.0
	HER2-low	51.3	54.7	0.0
HER2 status, % ^b	HER2+	0.0	0.0	100.0
	HER2 IHC 2+ (ISH unknown)	11.5	9.4	0.0
	Unknown	2.7	0.0	0.0
	Lung and/or Liver	90.3	64.2	85.7
	Lung	43.4	47.2	42.9
Presence of metastasis (BICR), %	Liver	75.2	34.0	57.1
	Brain ^c	10.6	9.4	28.6
	Bone	60.2	35.8	50.0
Median sum of diameters (BICR; range), m	m	54.0 (10, 182)	44.4 (11, 186)	44.6 (17, 85)
	All regimens	7.0 (2-14)	3.0 (1-13)	6.5 (2-11)
Median number of prior cancer regimens	In advanced setting	6.0 (2-13)	2.0 (1-13)	5.5 (2-11)
(range), n	CT in advanced setting	3.0 (1-7)	2.0 (1-6)	4.0 (2-8)

Patients with HER3-expressing metastatic BC with poor prognostic characteristics were heavily pretreated.

BICR, blinded independent central review; CT, chemotherapy; DE/DF, dose escalation/dose finding; ECOG PS, Eastern Cooperative Oncology Group performance status; ISH, in situ hybridization. ^a HER3-high was defined as ≥75% membrane positivity at 10x; HER3-low was defined as ≥25% and <75% membrane positivity at 10x. In DE/DF cohorts, IHC 2+ and 3+ were considered HER3-high. ^b HER2 status (based on medical records) was defined as: HER2-zero, IHC 0; HER2-low, IHC 1+ or 2+ (ISH-); HER2+, IHC 2+ (ISH+), IHC 3+. ^c Patients with clinically active brain metastases were excluded.

Clinical Efficacy

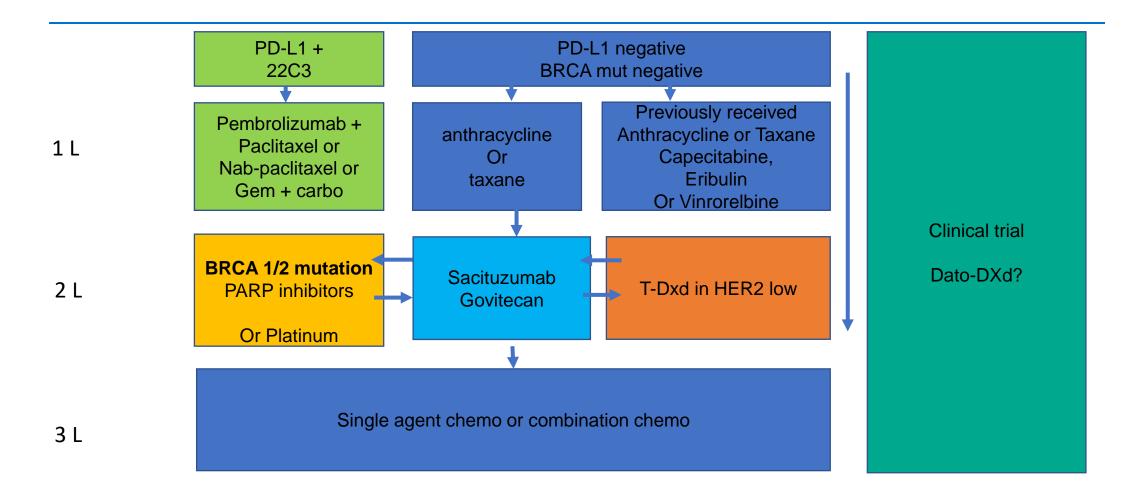
HER3-DXd induced a clinically meaningful decrease in tumor size by BICR in most patients across BC subtypes.^b

Outcomes (BICR per RECIST 1.1)	HR+/HER2- (n=113) HER3-High and -Low	TNBC (n=53) HER3-High	HER2+ (n=14) HER3-High
Confirmed ORR, % (95% Cl ^a)	30.1 (21.8-39.4)	22.6 (12.3-36.2)	42.9 (17.7-71.1)
Best overall response, % ^b			
PR	30.1	22.6	42.9
SD	50.4	56.6	50.0
PD	11.5	17.0	7.1
NE	8.0	3.8	0.0
DOR, median (95% CI), mo	7.2 (5.3-NE)	5.9 (3.0-8.4)	8.3 (2.8-26.4)
PFS, median (95% CI), mo	7.4 (4.7-8.4)	5.5 (3.9-6.8)	11.0 (4.4-16.4)

- HER3-DXd demonstrated durable antitumor activity across BC subtypes
- TNBC cohort: N=53, ORR 22.6%, DOR 5.9 mo, PFS 5.5 mon

Efficacy in TNBC is encouraging. Confirmatory data needed

- Toxicities:
 - TEAE associated with treatment discon 9.9%
 - Pneumonitis N=6
 - Disease progression N=2
 - Decreased LVEF N=1
 - ILD N=1
 - ILD 6.6%, mostly G1-2, 1 G5 ILD (0.5%)


ADCs to Target MBC: Ongoing studies

Drug	Target	Selected Ongoing Trials in MBC
Ado-trastuzumab emtansine (T-DM1)*	HER2	NCT04457596, NCT03975647 NCT04873362, NCT04740918
Trastuzumab deruxtecan (DS-8201a, T-DXd)*	HER2	NCT04784715, NCT04494425, NCT04739761, NCT04622319
Disitamab (RC-48)	HER2	Pending
Trastuzumab duocarmazine (SYD985)	HER2	NCT04602117, NCT01042379
Patritumab deruxtecan (U3-1402, HER3-DXd)	HER3	NCT04699630, NCT04610528
Sacituzumab govitecan (IMMU-132)*	TROP-2	NCT04230109, NCT04647916, NCT04595565, NCT04468061
Datopotamab deruxtecan (DS-1062)	TROP-2	NCT05104866, NCT03401385
Ladiratuzumab vedotin (SGN-LIV1a)	LIV-1	NCT01969643, NCT03310957

Trials of ADC+ immune checkpoint inhibitor in TNBC

Trial	Antibody-Drug Conjugate	Immune Checkpoint Inhibior
SGNLVA-001	Ladiratuzumab Vedotin	Pembrolizumab
ASCENT-03	Sacituzumab Govitecan	
Saci-IO	Sacituzumab Govitecan	
Morpheus-TNBC	Sacituzumab Govitecan	Atezolizumab
InCITe	Sacituzumab Govitecan	Avelumab
DESTINY-Breast08	T-DXd	Durvalumab
NTC04596150	CX-2009 (CD166-directed probody DC)	CX-072 (PD-L1 IO)

mTNBC- Treatment Algorithm

ADCs Sequencing?

Conclusion: We are making progress!!

- Triple Negative Breast Cancer (TNBC) is molecularly complex with tumor heterogeneity and clonal evolution
- Immune checkpoint inhibitor (ICI) has been approved for treatment of metastatic TNBC, and shown promising efficacy in early stage TNBC
- PARP inhibitors will continue to play important role in BRCA 1/2 mutated TNBC, PARPi+ ICI may show promising synergy in both gBRCA WT vs mutant pt
- AR targeted therapy had modest efficacy in AR+ TNBC
- AKT inhibitors: ipatasertib failed to show efficacy in phase III trials. Other AKT inhibitors on active trial.
- Antibody drug conjugates targeting a variety of receptors representing promising new treatments in breast cancer therapy
- HER-2 low tumor represent 40% of TNBC and T-DXd is FDA approved for treatment of HER2 low BC
- HER-2 low status does not impact response to eribulin or SG
- Novel immune stimulation strategies are actively developed