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This presentation and/or comments will provide a balanced, non-promotional, and evidence-based approach to all diagnostic,
therapeutic and/or research related content.
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Cultural Linguistic Competency (CLC) & Implicit Bias (1B)

STATE LAW:

The California legislature has passed Assembly Bill (AB) 1195, which states that as of July 1, 2006, all Category 1 CME activities that relate to patient care must include a
cultural diversity/linguistics component. It has also passed AB 241, which states that as of January 1, 2022, all continuing education courses for a physician and surgeon must
contain curriculum that includes specified instruction in the understanding of implicit bias in medical treatment.

The cultural and linguistic competency (CLC) and implicit bias (I1B) definitions reiterate how patients’ diverse backgrounds may impact their access to care.

EXEMPTION:

Business and Professions Code 2190.1 exempts activities which are dedicated solely to research or other issues that do not contain a direct patient care component.

The following CLC & IB components will be addressed in this presentation:

= Will discuss the bias in artificial intelligence caused by poor sampling of ethnic minorities

= /mplicit bias of models built upon non-representative cohorts of patients

3

©2024 Mayo Foundation for Medical Education and Research | slide-3


https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=200520060AB1195
https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201920200AB241

WHO AM |

JACOB SHREVE MD

* Clinician, senior heme/onc
fellow, Mayo Clinic

« Specialist in bioinformatics at
a core facility

e Computational scientist in
academia

« Software engineer for
biotech, personal exomics

 Cofounder of a healthcare Al
tech startup

* Transitioned to medicine to
explore how tech can
personalize care

| AM NOT:

An expert in all things
artificial intelligence

| AM:

Continuously working to
expand my knowledge
base and skill set

| WANT:

To bring together like-
minded people to benefit
from our shared experience
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Industry




ARTIFICIAL INTELLIGENCE

AGENDA

* Why use Al & how does it work
« Al in oncology examples
* Where is the Al revolution?

 How to evaluate Al research



WHY Al

ARTIFICIAL INTELLIGENCE

® Decades of progress, starting in 1950s

® Golden Age: currently have numerous open-source packages

® Difference from traditional statistics:
¥ Goal of statistics is to assess relationships between variables and provide hypothesis testing

¥  Goal of Al is to model a system and provide accurate predictions “end justifies the means”

® Challenge: supreme buzz-word status



WHY Al

TECH TODAY
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WHY Al

Al IN HEALTHCARE

IBM Tl Outcomes Radiology
Watson H H

Organizational performance, "  Prevent complications, ® Automated radiograph
interpretation make better choices interpretation

@ Drug Pathology
Discovery

" Molecule efficacy "  Automated microscopy
prediction interpretation




i .
Cardiovascular diseases dicine: the convergence of
Artificial intelligence for the electrocardiogram 1telligence

Perspective | Published: 07 January 2019
Ana Minchol

The practical implementation of artificial intelligence

News & Views | Published: 07 January 2019

Nature Medi . - . .
technologies in medicine
6659 Acces
Jianxing He &, Sally L. Baxter, Jie Xu, Jiming Xu, Xirtgtao Zhou & Kang Zhang e c“nicia“ lear“s Optimal
Deep-lear; Nature Medicine 25, 30-36 (2019) | Cite this article sep5is in intenSive care
28k Accesses | 287 Citations | 57 Altmetric | Metrics
capable of B | | : | i, Anthony C. Gordon =2 & A. Aldo Faisal
aid health
Abstract 1is article

. | Metrics
Artificial in The development of artificial intelligence (Al)-based technologies in medicine is advancing

ability to o rapidly, but real-world clinical implementation has not yet become a reality. Here we review

innovation some of the key practical issues surrounding the implementation of Al into existing clinical

impact. In' workflows, including data sharing and privacy, transparency of algorithms, data worldwide and the main cause of mortality in

healthcare standardization, and interoperability across multiple platforms, and concern for patient ~ €8Y remainsuncertain. In particular, evidence

systematic safety. We summarize the current regulatory environment in the United States and highlight ninistration of intravenous fluids and vasopressors

:  antcld5.6 -
asymptom comparisons with other regions in the world, notably Europe and China. aproportion of patients - Totackle this

. . . , we developed a reinforcement learning agent, the
performance computing and cloud computing have become available through hardware woist e P gag

i i . . . . cian, which extracted implicit knowledge from an amount of
improvements, particularly in graphics processing units.

independent set of 52,870 patients, the networkmodelyii ~ Pauient aata tnat exceeas by many-fold the life-time experience of human clinicians and

o



MAYO
CLINIC

Y NEJM:

Artificial Intelligence in Medicine
1

After hearing for several decades that computers will soon
be able to assist with difficult diagnoses, the practicing

physician may well wonder why the revolution has not
occurred...

)

1987
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RATIONAL

TRADITIONAL MEDICINE

Targeted hypothesis testing, pathophysiology driven, incremental large
advancements in the field

Biological System Our Understanding
*



RATIONAL

Al / ML APPROACH

Data type integration, larger sample sizes, more sophisticated
modeling

EMR, radiomics,
Proteomics, digital pathology,
EMR EMR + radiomics Wearable devices, etc



Demonstration

= The algorithm starts with
hundreds / thousands of
attempts

= Each attempt has random
variables within specific
boundaries



Demonstration

= Another round begins with
new variable boundaries



Demonstration

= After many rounds, the
optimal variable settings
have been determined



Artificial Intelligence

Machine Learning

Neural Networks

R& &

Deep Learning

o
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HOW DOES IT WORK

COMMON ALGORITHM GOALS

Q

RANDOM FOREST
Combine weighted
decision trees to
make prediction

e Generates many
randomly created
decision trees, assigns
weights, sums a
prediction path



HOW DOES IT WORK

DEEP LEARNING

e |tis atype of machine learning \\

Deep neural network
Input layer Multiple hidden layers Output layer

/.\\

that uses neural networks with 3 .A\’{!/. _‘\’A O

or more (many more) hidden \“‘N’((" \‘ss"(
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N Ve

' a4 \ atd
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HOW DOES IT WORK

COMPUTER VISION

« Show medical imaging to an Al
algorithm and have it
understand where tumor is
located




Computer vision: neuroimaging feature extraction
using deep learning

* Image acquisition (MR brain)

Image registration (spatial alignment)

Preprocessing, including skull stripping (FSL brain
extraction tool / Robust brain extraction)

Intensity normalization

Noise reduction (using Gaussian convolution)

Bias field correction (N4 bias field correction)

Segmentation

» Feature extraction (1st order, 2nd order, high-order
features)




First model: neuroimaging feature extraction using
deep learning

Image acquisition (MR brain)

Image registration (spatial alignment)

Preprocessing, including skull stripping (FSL brain
extraction tool / Robust brain extraction)

Intensity normalization

Noise reduction (using Gaussian convolution)

Bias field correction (N4 bias field correction)

Segmentation

» Feature extraction (1st order, 2nd order, high-order
features)
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First model: neuroimaging feature extraction using
deep learning

Image acquisition (MR brain)

Image registration (spatial alignment)

Preprocessing, including skull stripping (FSL brain
extraction tool / Robust brain extraction)

Intensity normalization

Noise reduction (using Gaussian convolution)

Bias field correction (N4 bias field correction)

Segmentation

» Feature extraction (1st order, 2nd order, high-order
features)




First model: neuroimaging feature extraction using
deep learning

Image acquisition (MR brain)

Image registration (spatial alignment)

Preprocessing, including skull stripping (FSL brain

extraction tool / Robust brain extraction) e« Tumor volume

* Max tumor signal intensity

* Average tumor signal intensity
Noise reduction (using Gaussian convolution) « Variance of tumor signal intensity
« Distribution of voxel intensities

o 2D shape characteristics

Intensity normalization

Bias field correction (N4 bias field correction)

« Segmentation e 3D shape characteristics
o Texture analysis
» Feature extraction (1st order, 2nd order, high-order /
features)
[ Variable A J Varlable D }

[ Variable B Varlable C




FDA-approved applications of deep learning: Gl Genius™, by Medtronic

FDA SaMD

» Software as a Medical
Device

* 510(Kk) clearance
* De Novo request
* Premarket approval

* 692 devices approved as
of late 2023

* 79% computer vision

* 30% increase in
approvals over the
previous year



TYPES OF Al

GENERATIVE Al & LLMS

o ChatGPT

e Sentiment analysis

« Paraphrasing / semantic equivalence
o Text summarization

* Information extraction

e Scheduling / in-basket relief

* EMR mining

* Medical education

o Patient summaries / note stems

* No FDA approvals out of 692 devices!
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Acute Myeloid Leukemia

® Outcomes associated with complex interaction of clinical features (1/3)
and cytogenetic/molecular features (2/3)

" Prognostication determines choice of consolidative therapy
(hematopoietic cell transplantation vs chemotherapy)

®" The European LeukemiaNet (ELN) risk stratifies patients:

Favorable

Adverse

Shreve, J., Meggendorfer, M., Awada, H., Mukherjee, S., Walter, W., Hutter, S., Makhoul, A., Hilton, C.B., Radakovich, N., Nagata, Y. and Rouphail, Y.,
2019. A personalized prediction model to risk stratify patients with acute myeloid leukemia (AML) using artificial intelligence. Blood, 134, p.2091.



Acute Myeloid Leukemia

® Outcomes associated with complex interaction of clinical features (1/3)
and cytogenetic/molecular features (2/3)

" Prognostication determines choice of consolidative therapy
(hematopoletic cell transplantation vs chemotherapy)

®" The European LeukemiaNet (ELN) risk stratifies patients:

Favorable t(8;21)(922;922.1); RUNX1-RUNX1T1

— Inv(16)(p13.1;922) or t(16;16)(p13.1;922); CBFB-MYH11
Mutated NPM1 without FLT3-ITD or with FLT3-ITD'ow
Biallelic mutated CEBPA

Adverse

Shreve, J., Meggendorfer, M., Awada, H., Mukherjee, S., Walter, W., Hutter, S., Makhoul, A., Hilton, C.B., Radakovich, N., Nagata, Y. and Rouphail, Y.,
2019. A personalized prediction model to risk stratify patients with acute myeloid leukemia (AML) using artificial intelligence. Blood, 134, p.2091.



Acute Myeloid Leukemia

® Outcomes associated with complex interaction of clinical features (1/3)
and cytogenetic/molecular features (2/3)

" Prognostication determines choice of consolidative therapy
(hematopoietic cell transplantation vs chemotherapy)

®" The European LeukemiaNet (ELN) risk stratifies patients:

Mutated NPM1 and FLT3-ITDhigh

Favorable
Wild type NPM1 without FLT3-ITD or with FLT3-ITD'ow
t(9;11)(p21.3;923.3); MLLT3-KMT2A
Adverse | y .
Cytogenetic abnormalities not classified

Shreve, J., Meggendorfer, M., Awada, H., Mukherjee, S., Walter, W., Hutter, S., Makhoul, A., Hilton, C.B., Radakovich, N., Nagata, Y. and Rouphail, Y.,
2019. A personalized prediction model to risk stratify patients with acute myeloid leukemia (AML) using artificial intelligence. Blood, 134, p.2091.



Acute Myeloid Leukemia

® Outcomes associated with complex interaction of clinical features (1/3)
and cytogenetic/molecular features (2/3)

" Prognostication determines choice of consolidative therapy
(hematopoletic cell transplantation vs chemotherapy)

®" The European LeukemiaNet (ELN) risk stratifies patients:

Favorable t(6;9)(p23;934.1); DEK-NUP214
t(v;11923.3); KMT2A rearranged
t(9;22)(q34.1;911.2); BCR-ABL1

Adverse
— Complex karyotype, monosomal karyotype

Shreve, J., Meggendorfer, M., Awada, H., Mukherjee, S., Walter, W., Hutter, S., Makhoul, A., Hilton, C.B., Radakovich, N., Nagata, Y. and Rouphail, Y.,
2019. A personalized prediction model to risk stratify patients with acute myeloid leukemia (AML) using artificial intelligence. Blood, 134, p.2091.



Acute Myeloid Leukemia

" Current best-practice ELN classification only has 75% accuracy

®" How can the numerous prognostic features in AML be better
characterized?

Translocations Chimeric oncogenes
Bone marrow blasts %

WBCs Rearrangements

Age Epigenetic regulators

Regulators of apoptosis Deletions

Tumor suppressors
Duplications
Sex Transplant status

DNA repair



Results

" Features found to significantly impact the prognostic model:

" Age, transplant status, WBC, bone marrow blast %, cytogenetics
® ASXL1, CEBPA, DNMT3A, FLT3, KDM6A, KIT, KRAS, NPM1, NRAS, PHF6, PTPN11, RUNX1, TET2, TP53

" The C-index for this new clinical-genomic model was 0.80, significantly
outperforming ELN classification (0.59)

0.81 0.85 0.83 0.79

C-statistic
9ZIS 110oyod




Feature contribution — AML prognostication

Probability of adverse outcome Probability of adverse outcome
0000 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
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USE CASE EXAMPLE

LIVER FIBROSIS

* Machine learning model to identify
patients with liver fibrosis who were
indeterminant by FIB-4 criteria

* 960 patients in cohort, divided into
training and test cohort

* The machine learning model correctly
classified 80% of the indeterminant
subgroup

Aggarwal, M., Shreve, J. and McCullough, A., 2021. Machine learning model correctly
identifies patients with advanced liver fibrosis which are indeterminate by FIB-4 index in
non-alcoholic fatty liver disease. Gastroenterology, 160(6), pp.S-114.
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USE CASE EXAMPLE

MYELOMA

Computer vision prognostication based on
baseline PET scan at diagnosis

« PET CT scans are analyzed using the nnU-Net
deep learning architecture

* Al-segmented tumor then is used to generate
radiomics features

« 3 year OS predictive modeling

Shreve, J. et al., 2023 Predicting high-risk disease biology using artificial intelligence based
FDG PET/CT radiomics in newly diagnosed multiple myeloma. HemaSphere, 7(S3), p.e0586106.
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USE CASE EXAMPLE

MYELOMA

« Atotal of 506 myeloma patients were processing using the computer vision algorithm

« Failure to achieve 3-year overall survival was strongly associated with maximum 2D tumor diameter (OR
2.26, 95%CI 1.45-3.54, p<0.001).

* Able to predict certain high-risk translocations based solely on automated PET CT radiomics



USE CASE EXAMPLE

LYMPHOMA

e Computer vision prognostication based on
baseline PET scan at diagnosis

 Compared PET scan computer vision
prognostication to current gold standard,
the NCCN-IPI

* Radiomics features were combined with
clinical features to create an integrated
model

Shreve, J. et al., 2023. Artificial Intelligence Derived Changes between Baseline and Interim FDG-PET/CT
Radiomics Features Are Associated with Survival Outcomes in Diffuse Large B-Cell Lymphoma
(DLBCL). Blood, 142, p.5026.




BACKGROUND

« Manual chart review identified PET CTs within 1 month prior to 1%t line therapy, n=861

« Segmentation was accomplished using the nnU-Net architecture loaded with a pretrained
lymphoma-specific segmentation model [1]

» Area of interest was determined using a deep learning convolutional neural network (CNN)

[1] Blanc-Durand et al. 2021. Fully automatic segmentation of diffuse large B cell lymphoma lesions on 3D FDG-
PET/CT for total metabolic tumour volume prediction using a convolutional neural network. European Journal of
Nuclear Medicine and Molecular Imaging, 48, pp.1362-1370.



RESULTS

» Evaluation of single radiomics features: TMTV

-log2(p)
19.89

test statistic p
23.87 <0.0685

Kaplan Meier plot of TMTV quantiles (EFS)
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RESULTS

 Evaluation of single radiomics features: LeastAxisLength

test statistic p -log2(p)
23.20 <©.005 19.39
Kaplan Meier plot of quantiles (EFS) Kaplan Meier plot of quantiles (EFS)
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RESULTS

 Evaluation of single radiomics features: SUV_mean

test statistic p -log2(p) test statistic p -log2(p)
12.29 <©.065 11.18 41.80 <©.e85 33.20
Kaplan Meier plot of quantiles (EFS) Kaplan Meier plot of quantiles (EFS)
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RESULTS

« Cox Regression of single radiomics features against EFS, right-sided censored (expanded data,
expunged missing rows)

* NCCN-IPI: 64.51% (adjusted to missing data without radiomics)

Concordance 0.65

Partial AIC 2857.46
log-likelihood ratio test  70.36 on 1 df

» 6 radiomics features + 2 labs: 68.16%

Concordance .68
Partial AIC 2821.82
log-likelihood ratio test  120.00 on & df

-log2({p) of ll-ratio test 71.35

* 5 radiomics features + 8 clinical features: 70.04%
Concordance 0.70
Partial AIC 2808.02

log-likelihood ratio test  147.79 on 15 df
-log2(p) of ll-ratio test 77.00
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ARTIFICIAL INTELLIGENCE

THE REVOLUTION

o “After hearing for several decades that computers will soon be able to assist with difficult diagnoses,
the practicing physician may well wonder why the revolution has not occurred...” 1987

* Predictive modeling using Al is the modern correlate of evidence-based medicine (EBM) scoring
algorithms

* Simple stochiometric EBM scoring mechanisms are still standard of care
Wells” Criteria for PE risk
CHA,DS,-VASc for atrial fibrillation stroke risk

* Alarge part of the “revolution” is using Al to improve upon these methods — medical predictions



WHERE IS THE REVOLUTION

WELLS' CRITERIA

1995: inception of Wells’ rules based on “expert
opinion and literature review”, pilot study of 91
patients

1998: expansion of study to 529 patients

2001: seminal study with 1,239 patients the
cemented Wells’ Criteria into clinical practice

Since that time many Al-powered approaches
have attempted to dethrone Wells’ Criteria

Clinical signs and symptoms of DVT No 0 Yes +3

PE is #1 diagnosis OR equally likely Yes +3

Heart rate > 100 No 0 Yes +1.5

Immobilization at least 3 days OR surgery in No 0 Yes +1.5
the previous 4 weeks

Previous, objectively diagnosed PE or DVT “ Yes +1.5
Malignancy w/ treatment within 6 months or No 0
palliative

7.0 points

High risk group: 40.6% chance of PE in an ED population.

Another study assigned scores > 4 as “PE Likely” and had a 28% incidence of PE.

Copy Results @

Next Steps »
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WHERE IS THE REVOLUTION

WELLS ALTERNATIVE

EMR-based natural language processing
approach

3,214 patients used for the model
240 patients used as an external control
AUROC 0.71 when validated on external data

Dramatically more accurate than Wells’ Criteria

Multicenter Study > JAMA Netw Open. 2019 Aug 2;2(8):e198719.
doi: 10.1001/jamanetworkopen.2019.8719.

Development and Performance of the Pulmonary
Embolism Result Forecast Model (PERFORM) for
Computed Tomography Clinical Decision Support

Imon Banerjee ' 2, Miji Sofela 3, Jaden Yang 4, Jonathan H Chen 5, Nigam H Shah 5,
Robyn Ball 4, Alvin | Mushlin &, Manisha Desai 4, Joseph Bledsoe 7, Timothy Amrhein &,
Daniel L Rubin ' 2, Roham Zamanian 2, Matthew P Lungren 2

Affiliations + expand
PMID: 31390040 PMCID: PMC6686780 DOI: 10.1001/jamanetworkopen.2019.8719
Free PMC article

Abstract

Importance: Pulmonary embolism (PE) is a life-threatening clinical problem, and computed
tomographic imaging is the standard for diagnosis. Clinical decision support rules based on PE risk-
scoring models have been developed to compute pretest probability but are underused and tend to
underperform in practice, leading to persistent overuse of CT imaging for PE.

Objective: To develop a machine learning model to generate a patient-specific risk score for PE by
analyzing longitudinal clinical data as clinical decision support for patients referred for CT imaging
for PE.

Design, setting, and participants: In this diagnostic study, the proposed workflow for the
machine learning model, the Pulmonary Embolism Result Forecast Model (PERFORM), transforms
raw electronic medical record (EMR) data into temporal feature vectors and develops a decision
analytical model targeted toward adult patients referred for CT imaging for PE. The model was
tested on holdout patient EMR data from 2 large, academic medical practices. A total of 3397
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1,014 patients used for the model
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WELLS ALTERNATIVE

ECG, EMR, NLP data used to train the model in
a multimodal approach

21,183 patients used for the model
Only internal validation done, no external data
AUROC 0.84 when validated on hold-out data

Dramatically more accurate than Wells’ Criteria
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Abstract

Aims

Clinical scoring systems for pulmonary embolism (PE) screening have low
specificity and contribute to computed tomography pulmonary angiogram
(CTPA) overuse. We assessed whether deep learning models using an existing

and routinely collected data modality, electrocardiogram (ECG) waveforms, can
increase specificity for PE detection.

Methods and results

We create a retrospective cohort of 21183 patients at moderate- to high
suspicion of PE and associate 23793 CTPAs (10.0% PE-positive) with 320746
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WELLS' CRITERIA

* Understanding why Wells’ has been so successful also reveals why the revolution hasn’t
happened yet
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Standard of care for atrial fibrillation risk and
need for anticoagulation

Has at least 147 validation studies supporting its
use

Numerous Al-powered alternatives with better
AUROC scores

» Lack external validation

* Lack calibration studies and other QC
metrics of robustness

« Fall by the wayside

CHA,DS>-VASc Score for Atrial Fibrillation
Stroke Risk +-

Calculates stroke risk for patients with atrial fibrillation, possibly better than the

When to Use v

Age <65 0 65-74 +1 >75 +2

Pearls/Pitfalls Why Use v

Sex Female +1

Hypertension history No 0

Stroke/TIA/thromboembolism history

3 points

Stroke risk was 3.2% per year in >90,000 patients (the Swedish Atrial Fibrillation Cohort
Study) and 4.6% risk of stroke/TIA/systemic embolism.

One recommendation suggests a 0 score for men or 1 score for women (no clinical risk
factors) is “low” risk and may not require anticoagulation; a 1 score for men or 2 score for
women is “low-moderate” risk and should consider antiplatelet or anticoagulation; and a
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LIVER DISEASES

e This review article lists in detail 75 different high-quality Al/ML liver disease models
* Topics range from viral hepatitis, NAFLD, NASH, cirrhosis, acute liver failure, liver transplant

* Very few of these are ever found in clinical practice

HEPATOLOGY FAASLD|

REVIEW | HePATOLOGY,VOL.73,NO. 6, 2021

Application of Artificial Intelligence for the

Diagnosis and Treatment of Liver Diseases

Tk

Joseph C. Ahn ,* Alistair Connell "= 2* Douglas A. Simonetto ,! Cian Hughes 2**and Vijay H. Shah

Modern medical care produces large volumes of multimodal patient data, which many clinicians struggle to process and
synthesize into actionable knowledge. In recent years, artificial intelligence (AI) has emerged as an effective tool in this
regard. The field of hepatology is no exception, with a growing number of studies published that apply Al techniques

to the diagnosis and treatment of liver diseases. These have included machine-learning algorithms (such as regression
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REPRODUCIBILITY

A review that evaluated 86 radiologic diagnostic models found that 70 such models had
decreased performance when applied to external data

21 of which produced significantly incongruent results
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Purpose:  To assess generalizability of published deep learning (DL) algorithms for radiologic diagnosis.

Materials and Methods: In this systematic review, the PubMed database was searched for peer-reviewed studies of DL algorithms for im-
age-based radiologic diagnosis that included external validation, published from January 1, 2015, through April 1, 2021. Studies using
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ENABLE THE REVOLUTION

* Necessary components of a predictive medical model:

e Training cohort demographics are representative of the population; special attention for minorities and
marginalized groups

e Modeling algorithm should be the lowest complexity possible

e Should include clinically-relevant features guided by expert consensus; infuses domain knowledge

e Rigorous quality control metrics
o k-fold cross validation, bootstrapping, variance estimation, calibration studies

e lterative feature reduction to decreases model complexity
e Ease of adoptability
e Remaining features should have relative weights reported

e External validation must be completed at the time of publication
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AGENDA

* Why use Al & how does it work
« Al in oncology examples
* Where is the Al revolution?

 How to evaluate Al research



MODEL EVALUATION

STANDARD QC

k-fold cross validation

AUROC reporting

Confusion matrix

Bootstrapping with confidence intervals
Variance estimation

Calibration studies

Feature importance / Shapley statistics
External validation

Etc.
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AGENDA

* Why use Al & how does it work
« Al in oncology examples

* Where is the Al revolution?

« How to evaluate Al research

 Final thoughts
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@ MULTI-MODAL LB)

RADIOLOGY DATA INTEGRATION 1 DATA

Computer vision for CT

[ MRI /| PET
\

Clinical information including
PMH, medications, disease

p E course, labs, vitals

INTEGRATED MODEL

GENOMICS / I DIGITAL PATHOLOGY

Primary sequencing data, Computer vision for tumor
bioinformatics —} slides

LANGUAGE ANALYSIS

Natural language processing
(NLP) for chart interpretation
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NEAR FUTURE

Living databases  Automatic modeling  Multimodal data integration
that undergo nightly updates using those living databases to to begin to capture the actual
directly from EMR data continuously improve upon a complexity of the system,
streams, ever increasing study model as new information is edging closer to predictive
population and the features added to the database capabilities

being evaluated

* Uphill battle
Must out-perform AND out-validate existing tools and systems if the revolution is to occur.
Must have the maturity, rigor, and reproducibility that is expected in medicine



CONCLUSIONS
* Al is poised to make explosive changes
throughout medicine

* Oncology has a great need for
personalized care

* The individual tools already exist, it's
now a matter of when, not if

THANK YOU

Jacob Shreve
shreve.jacob@mayo.edu
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