

⊥ World Congress of □ Cutaneous Lymphomas

Therapeutics/Preclinical Studies #128

Allogenic stem cell transplant for mycosis fungoides and Sezary syndrome: A systematic review and meta-analysis

Francine Foss, MD

Professor of Medicine, Hematology and Stem Cell Therapy Yale University School of Medicine New Haven, CT 06517

Amrita Goyal-O'Leary

Assistant Professor of Dermatology University of Minnesoda Medical Center Minneapolis, Minnesoda USA

Disclosures (Dr Foss)

- Consultant/Advisor for Kyowa Kirin, and Secura Bio.
- Grant/Research Support from Astex Pharmaceuticals, and Daiichi-Sankyo

This presentation and/or comments will be free of any bias toward or promotion of the above referenced companies or their product(s) and/or other business interests.

This presentation and/or comments will provide a balanced, non-promotional, and evidence-based approach to all diagnostic, therapeutic and/or research related content.

This presentation has been peer-reviewed and no conflicts were noted.

Advanced MF/SS is incurable with existing therapies and represents an unmet medical need

- ProCLIPI was a prospective study of 1,275 patients with advanced MF/SS from 29 international sites
- OS was 63 months, 5-year OS 52%,
 - Median OS IIB 68 mo (5.6 years)
 - Median OS IVA 48 mo (4 years)
 - Median OS IVB 33 mo (2.8 years)

Kaplan-Meier plot showing survival by stage (N=1275).

We conducted a meta- analysis to determine outcomes after alloBMT for MF/SS

MANUSCRIPT CHARACTERISTICS

	Manuscripts N=15			
Study type				
Retrospective cohort	12			
Prospective cohort	1			
Prospective, propensity matched	1			
RCT	1			
Center vs. Registry				
Single-center	9			
Multi-center	2			
Registry	4			
Diagnosis				
MF vs SS	12			
MF/SS or CTCL	3			

Author	Institution	Data source	Study type	Number of patients
Duarte et al., 2010	EBMT (Europe)	Registry	Retrospective	60
Duvic et al., 2010	MD Anderson (US)	Single-center	Retrospective	19
Zain et al, 2011	City of Hope (US)	Single-center	Retrospective	13
Delioukina et al., 2012	City of Hope (US)	Single-center	Retrospective	11
Lechowicz et al., 2014	CIBMTR (US)	Registry	Retrospective	129
Hosing et al., 2015	MD Anderson (US)	Single-center	Prospective	47
Mori et al, 2019	Japan Society for HSCT	Registry	Retrospective	48
Isufi et al, 2020	Yale (US)	Single-center	Retrospective	16
Weng et al, 2020	Stanford (US)	Single-center	Prospective, Phase II clinical trial	35
Domingo-Domenech et al., 2020	EBMT (Europe)	Registry	Retrospective	53
Elliott et al., 2021	Peter MacCallum Cancer Center (Australia)	Multi-center	Retrospective	26
Stamouli et al, 2021.	National and Kapodistrian University of Athens (Greece)	Single-center	Retrospective	10
Angelov et al, 2022	St. James Hospital (Ireland)	Single-center	Retrospective	15
Cengiz et al, 2022.	Ankara University School of Medicine (Turkey)	Single-center	Retrospective	20
De Masson et al, 2023	CUTALLO Group (France)	Multi-center	Prospective	55

Patients and outcomes

PATIENT CHARACTERISTICS				
N=557				
Diagnosis				
MF	254			
SS	150			
MF/SS	153			
Gender				
Male	321			
Female	225			
Follow-up (median, range)	32 months (10.5-86.4 months)			
Time from diagnosis to transplant (median, range)	28.8 months (12-47.3 months)			

Survival				
% (95% CI)				
OS	1 year	51% (39-64)		
	3+ year	40% (32-49)		
PFS	1 year	42% (31-53)		
	3+ year	33% (25-42)		

Meta-analysis: relapse

Relapse			
% (95% CI)			
Non-relapse mortality	18% (13-23)		
Incidence of relapse	47% (40-53)		
Time to relapse	7.9 months (range 1.6-24 months)		

Cause of death	N=213	% deaths
Progression/relapse	106	52.2%
GVHD	23	11.3%
Infection	45	22.1%
Organ failure	19	9.4%
Second malignancy	6	2.9%
Unspecified	14	6.9%

Weng et al.

- -Majority of relapses involved the skin
- -Majority of patients with residual disease after transplant had isolated cutaneous disease

Relapse common, but approximately half of patients had durable remissions

6

Meta-analysis- conditioning and GVHD

CONDITIONING				
% (95% CI)				
Conditioning regimen RIC 58% (47-68) (cumulative P<0.001				
OS)	MAC	30% (17-24)		

GVHD				
% (95% CI)				
aGVHD	All	44% (33-55)		
	Grade III-IV	14% (8-20)		
cGVHD	All	40% (33-48)		
	Extensive	17% (10-24)		

Study					Ef wit	fect Size h 95% 0	e Cl	Weight (%)
Myeloablative conditioning (MAC)								
Duarte et. al. (2010)	80	-			0.29 [0.05, 0	0.53]	8.53
Lechowicz et. al. (2014)		-	<u> </u>		0.31 [0.15, 0	0.47]	10.83
Cengiz et. al. (2022)		-			0.26 [-0.07, 0	0.60]	6.07
Heterogeneity: $\tau^2 = 0.00$, $I^2 = 0.00\%$, $H^2 = 1.00$		-	-		0.30 [0.17, 0	0.42]	
Test of $\theta_i = \theta_j$: Q(2) = 0.06, p = 0.97								
Reduced-intensity conditioning (RIC)								
Duarte et. al. (2010)					0.63 [0.48, 0	0.78]	11.35
Duvic et. al. (2010)			_	_	0.79 [0.62, 0	0.96]	10.50
Delioukina et. al. (2012)					0.55 [0.45, 0	0.65]	12.85
Lechowicz et. al. (2014)		19 <mark>-</mark>			0.41 [0.29, 0	0.53]	12.26
Hosing et. al. (2015)					0.51 [0.37, 0	0.65]	11.48
Isufi et. al. (2020)			-		0.75 [0.52, 0	0.98]	8.90
Cengiz et. al. (2022)		0	-	-	0.43 [0.14, 0	0.71]	7.23
Heterogeneity: $\tau^2 = 0.01$, $I^2 = 68.01\%$, $H^2 = 3.13$			-		0.58 [0.47, 0	0.68]	
Test of $\theta_i = \theta_j$: Q(6) = 17.50, p = 0.01								
Overall			-		0.51 [0.40, 0	0.62]	
Heterogeneity: $\tau^2 = 0.02$, $l^2 = 75.25\%$, $H^2 = 4.04$								
Test of $\theta_i = \theta_j$: Q(9) = 31.19, p = 0.00								
Test of group differences: $Q_b(1) = 11.17$, p = 0.00					7			
N 75 KO21 SU BIORRATINA ILIANS	0		.5		1			
Random-effects REML model								

RIC for MF/SS shows with better OS than MAC, and generally associated with lower morbidity/mortality

Meta-analysis: DLI for relapse

DONOR LYMPHOCYTE INFUSION			
% (95% CI)			
Donor lymphocyte	CR	24/51 (47%)	
infusion for relapse	PR	7/51 (14%)	
(n=51)	PD	16/51 (31%)	

DLI may be an effective treatment option for MF/SS patients with relapse or residual disease after allo-HSCT

8

Role of TSEB, TBI, and TLI

- <u>Domingo-Domenech et al.</u> Use of TBI decreased incidence of relapse (HR 0.48, 95% CI 0.24-0.96). There was no difference in NRM, PFS, or OS
- Weng et al. Regimen of TSEBT-TLI-ATG was highly effective in cytoreduction; TSEBT critical for skin-specific debulking
- Isufi et al. Trend to better early post-transplant disease control with TBI/TSEBT
- <u>Duvic et al</u>. Use of 36 Gy in 8 fractions to debulk the skin may reduce severity of post-transplant cutaneous GVHD
- Mori et al. No difference in OS or PFS based on 2-4 Gy vs. 12 Gy

Data suggest that debulking of skin lesions with TSEBT may result in better outcomes and lower rates of cutaneous GVHD.

9

Impact of disease status at transplant

- Zain et al: CR/PR has trend to better OS than non-CR/PR (72.9% vs 43.2%, p=0.07)
- Mori et al: CR/PR has better OS than non-CR/PR (55.0% vs 20.1%, p<0.05)
- Isufi et al: no difference in OS for CR vs. PR on multivariate analysis (p=0.884)

Better disease control at the time of transplant may be associated with improved outcomes

Response : MF vs Sezary

- <u>Elliott et al</u>: <u>SS had a higher OS than MF</u> (100% vs 52.4%, p=0.04), higher 5-yr TFS (88.9% vs 15.6%, p=0.005), and longer TTNT (not reached vs. 24.0 months, p=0.02)
- Weng et al: 73% of SS patients achieved CR vs 31% of MF (p<0.05)
- <u>Hosing et al</u>: SS has higher PFS than MF (72% vs 11.5%, p=0.04), but no difference in OS (p=0.33)
- <u>Cengiz et al</u>: No significant difference in PFS for SS vs. MF (p=0.4)

In general, patients with SS had better response to allo-HSCT than those with MF

11

Conclusions and future directions

- Allo-HSCT results in durable remission for some patients with MF/SS
- Relapse after allo-HSCT for MF/SS is common; DLI may be effective for relapse
- Rates of aGVHD and cGVHD are similar to other malignancies
- Disease burden at time of transplant may impact outcome, and TBI/TSEBT may be important for debulking of skin compartment

Graft-versus-lymphoma (GVL) critical to success of allo-HSCT

- High efficacy of DLI in relapse
- GVL may be more effective in clearing extracutaneous disease
- Better efficacy of allo HSCT for SS than MF
- Some evidence that MF relapse/residual disease most commonly in skin

Future questions

Image: Histology of MF with LCT

- Assess outcomes of allo-HSCT for MF/SS in the context of recent improvements in regimens, donor availability, and supportive care
- Define parameters for optimization of allo-HSCT for MF/SS
 - Conditioning regimen (MAC vs. RIC ± TBI)
 - Post-transplant cyclophosphamide for GVHD prophylaxis
 - Time from diagnosis to transplant
 - Disease control at time of transplant
 - DLI for relapse or minimal residual disease

Clinical Practice Recommendations for Allogeneic Stem Cell Transplant for Mycosis Fungoides and Sezary Syndrome: Delphi-Based Consensus Guidelines from the NCCN, ASTCT, and USCLC

Thank you!

MANUSCRIPT SELECTION CRITERIA

