

™ World Congress of © Cutaneous Lymphomas

Enhancing the Ability to Diagnose, Interpret and Apply Best Treatment Options for Cutaneous Lymphomas

Leading Edge Research and Future Directions of Cutaneous Lymphoma #81

Gut microbiome of cutaneous T-cell lymphoma of cutaneous T cell lymphoma patients is altered following narrowband ultraviolet-B phototherapy and exhibits profiles that predict treatment responsiveness

William Nguyen, BS

Visiting Predoctoral Research Fellow

Department of Dermatology

Feinberg School of Medicine, Northwestern University

USA

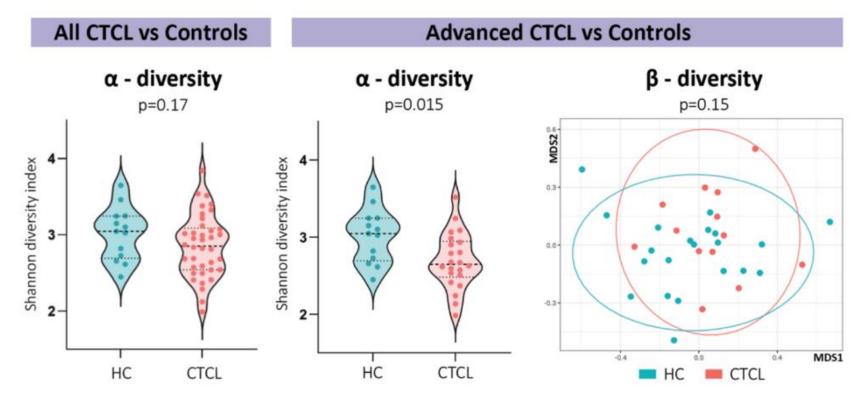
Disclosures

I do not have any relevant financial relationships.

This presentation and/or comments will provide a balanced, non-promotional, and evidence-based approach to all diagnostic, therapeutic and/or research related content.

CTCL and Association with Microbiome

- Increasing evidence suggests that CTCL is closely tied to host microbiome
 - Aggressive antibiotic treatment inhibits malignant T cells in lesional skin
 - CTCL mouse models exhibit mild, indolent disease when housed in germ free isolators but have rapid disease progression when moved to traditional housing


Lindahl et al, Blood 2019 Fanok et a., JID 2018

Previous Findings from Our Group

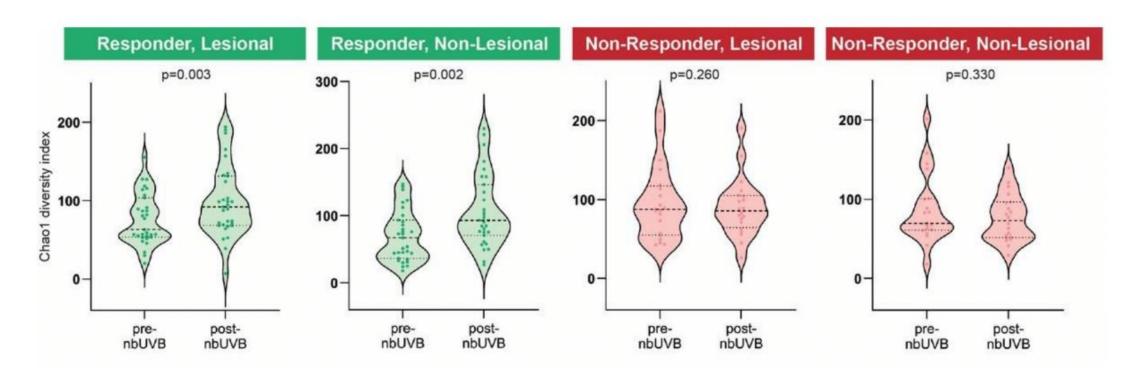
CTCL patients exhibit gut dysbiosis, particularly in advanced disease

n=38 CTCL n=13 HC

Hooper MJ...Zhou XA, JEADV Sep 2022

Previous findings from our group - Bacterial shifts mirror immune axis

Taxon	CTCL	Atopic Dermatitis	Psoriasis
Bifidobacteriaceae Bifidobacterium	V	Not seen ↓	↑
Coriobacteriaceae Collinsella	↓	V	↑ C. aerofaciens ↑
Eggerthellaceae	Unclassified ↓	Eggerthella 🗸	1
Prevotellaceae Prevotella	↑ / ↓ (advanced)	Paraprevotella 🔨	↑ ↑, P. copri ↓
Lactobacillaceae Lactobacillus	↓ (advanced disease)		V
Clostridiales	Family XIII ↓ Unclassified Family XIII ↓	Clostridium cluster IV ↓	Family XIII 🔨
Ruminococcaceae	Anaerotruncus ↓ Angelakisella ↓	\	↑ Ruminococcus ↑ R. gnavus ↑
Lachnospiraceae	Lachnospiraceae ND3007 group ↓ (advanced) Sellimonas ↑ (advanced)	Blautia ↓ / ↑ Coprococcus ↓	↑ Coprococcus ↓ Dorea formicigenerans ↑
Peptostreptococcaceae	Romboutsia ↓		^


Gut microbial signature in CTCL is similar to that of atopic dermatitis, opposite psoriasis

Hooper MJ...**Zhou XA**, *JEADV* Sep 2022

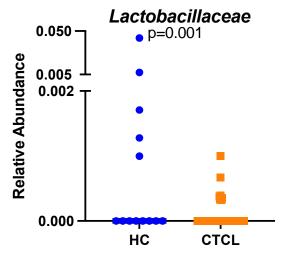
Previous Findings from Our Group

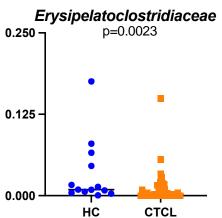
- When observing the skin microbiome, patients experienced a significant increase in alpha diversity in response to phototherapy
- Levels of Staph aureus and Staph lugdenensis significantly decreased

Hooper MJ...Zhou XA, Frontiers in Immunology Nov 2022

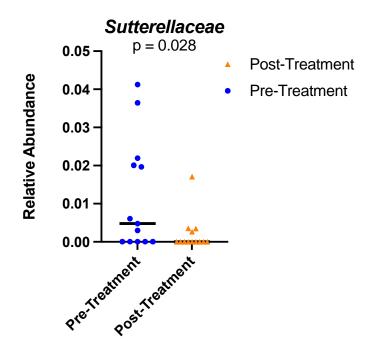
Big Questions

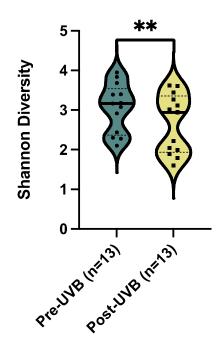
- Do the taxonomic differences in the gut for CTCL patients align with our previous paper?
- What changes can be observed pre vs post nbUVB?
- Are there differences in the gut microbiomes of nbUVB responders vs non-responders, as defined by mSWAT?


Patient Groups

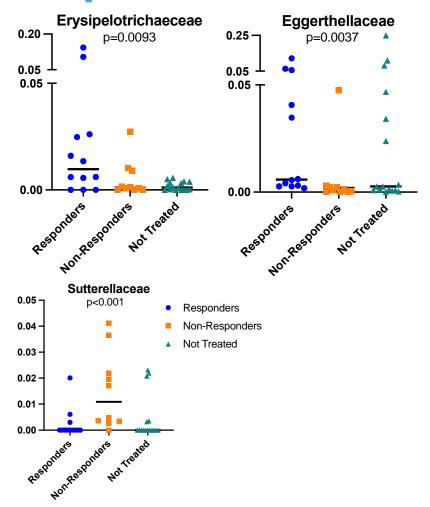

- 21 total CTCL patients
 - 13 patients underwent treatment regiment of nbUVB phototherapy
 - 6 responders and 7 non-responders
 - 8 patients used standard of care treatments but not nbUVB
- 13 Healthy Control patients (no CTCL or other active skin disease)
- Patients who utilized antibiotics within 4 weeks prior to collection were excluded

CTCL vs Healthy Controls



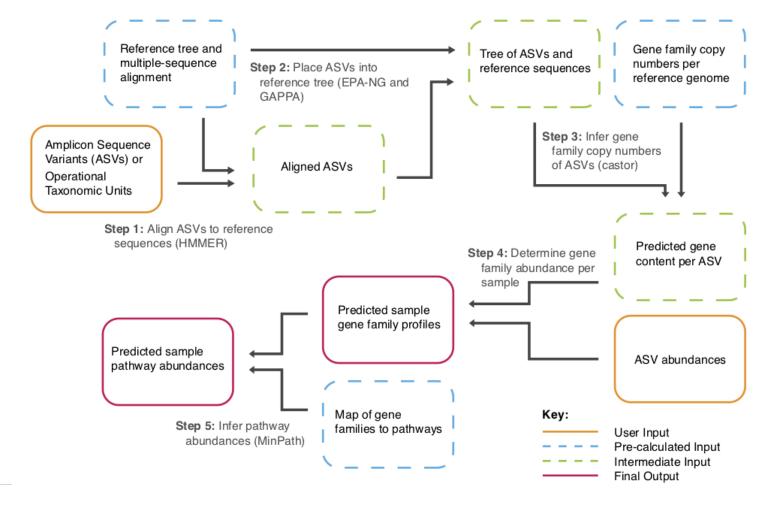

- Protective commensal bacteria including Lactobacillaceae and Erysipelatoclostridiaceae were significantly less abundant in CTCL
- Others higher in HC: Ruminococcaceae, Streptococcaceae, Tannerellaceae, Anaerovoracaceae, Peptostreptococcaceae, Rikenellaceae

Pre vs Post Phototherapy

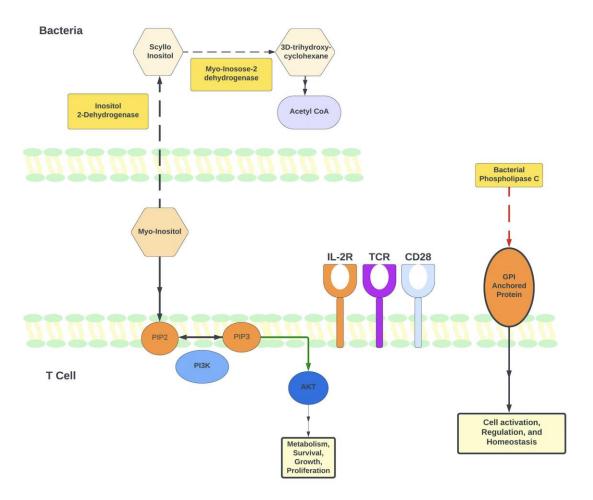


- Levels of proinflammatory Sutterellaceae (degrades IgA) decreased post-treatment
- Notably, alpha diversity decreased post treatment

Responders vs Nonresponders



- Sutterellaceae is increased in non-responders
- Responders have higher levels of Eggerthellaceae and Erysipelotrichaceae,
 - Eggerthellaceae has anti-inflammatory properties
- Lachnospiraceae trended higher in responders
 - Produces butyrate, a potent histone deacetylase inhibitor
 - Mechanism of action for vorinostat and romidepsin


PICRUSt 2.0 Analysis

Myoinositol degradation increases and Phospholipase C decreases following phototherapy

- What is the functional consequence of the changes following nbUVB therapy?
- Taking the microbiome community as a whole, degradation of myo-inositol increases following phototherapy
- Phospholipase C is also decreased
- We propose a mechanism of action for how this effects T-cell activity here
- This will need to be confirmed with further study

Key Points

- CTCL patients have gut dysbiosis
- Bidirectional relationship between immune systems of gut and skin in CTCL nbuVB leads to changes in the gut microbiome, and gut microbiome influences response to nbUVB (responders vs nonresponders)
- Levels of pro-inflammatory bacteria such as Sutterellaceae decrease following phototherapy
- Responders have higher levels of protective commensal bacteria such as Erysipelotrichaceae and Eggerthellaceae,
 while non-responders have higher levels of Sutterellaceae
- Myoinositol and Phospholipase C may decrease following phototherapy

Next Steps

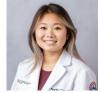
- Shotgun metagenomic sequencing to analyze the microbiome at a strain level
- Functionally validating our theories in the inositol pathway (metabolomics)
- Investigating influence of Lachnospiraceae on butyrate levels in CTCL (metabolomics)
- The relationship between nbUVB, Vitamin D, and the gut microbiome in CTCL

Acknowledgements

Microbiome Project

Xiaolong Alan Zhou, MD Joan Guitart, MD Teresa Griffin Lindsey Ayanruoh Madeline Hooper, MD Stephanie Rangel, PhD Katie Bagnowski, PhD Lauren Chrisman Janet Pang

Michael Burns, PhD (Loyola) Stefan Green, PhD (Rush) Ankur Nagib, PhD (Rush)


Cutaneous Lymphoma Team

Joan Guitart, MD Jaehyuk Choi, MD PhD Kelli Dunn, LPN Marjorie Mack, RN Lauren Chrisman



Thank you!

