Diabetes Research Symposium

Select Trial – New Insights into Obesity Treatment

Steven E. Kahn, MB, ChB

Professor of Medicine

Leonard L. Wright and Marjorie C. Wright Chair

VA Puget Sound Health Care System

University of Washington

Disclosures

- Consultant for Abarceo Pharma, AltPep, Amgen, Anji Pharmaceuticals, Biomea Fusion, Boehringer Ingelheim, Eli Lilly, Merck, Neurimmune, Novo Nordisk, and Oramed Pharmaceuticals.
- Grant/Research Support from Corcept Therapeutics.

This presentation and/or comments will be free of any bias toward or promotion of the above referenced companies or their product(s) and/or other business interests.

This presentation and/or comments will provide a balanced, non-promotional, and evidence-based approach to all diagnostic, therapeutic and/or research related content.

This presentation has been peer-reviewed and no conflicts were noted.

Cultural Linguistic Competency (CLC) & Implicit Bias (IB)

STATE LAW:

The California legislature has passed <u>Assembly Bill (AB) 1195</u>, which states that as of July 1, 2006, all Category 1 CME activities that relate to patient care must include a cultural diversity/linguistics component. It has also passed <u>AB 241</u>, which states that as of January 1, 2022, all continuing education courses for a physician and surgeon **must** contain curriculum that includes specified instruction in the understanding of implicit bias in medical treatment.

The cultural and linguistic competency (CLC) and implicit bias (IB) definitions reiterate how patients' diverse backgrounds may impact their access to care.

EXEMPTION:

Business and Professions Code 2190.1 exempts activities which are dedicated solely to research or other issues that do not contain a direct patient care component.

The following CLC & IB components will be addressed in this presentation:

- Demographic and outcome commonalities and differences among individuals in this study.
- Disparities in health care coverage will affect the availability of treatments to all groups.

CITY OF HOPE

Outline

- 1. Background
- 2. Study Design and Baseline Characteristics
- 3. Outcomes:
 - a) Primary Outcome: Cardiovascular Events
 - b) Secondary Outcomes: Weight, Glycemia, Renal
- 4. Implications

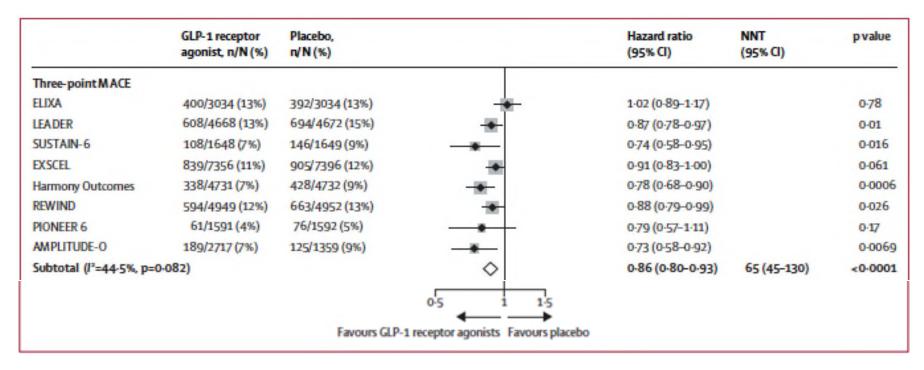
Outline

- 1. Background
- 2. Study Design and Baseline Characteristics
- 3. Outcomes:
 - a) Primary Outcome: Cardiovascular Events
 - b) Secondary Outcomes: Weight, Glycemia, Renal
- 4. Implications

The Link Between Obesity, CVD, and Death

In 2022, there were

813


million people aged ≥20 years living with obesity (BMI ≥30 kg/m²)^{2,3} 523

million people had **CVD** in 2019⁴ 32%

of all global deaths are from CVD⁵

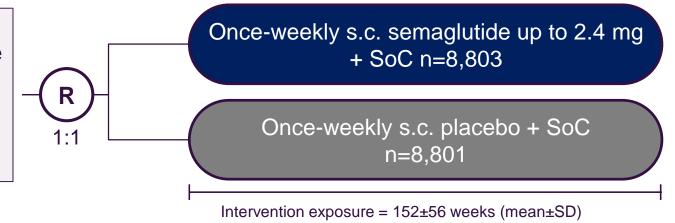
^{1.} Yoo HJ Choi KM: World J Diabetes 5:357-363; 2014; 2. World Obesity Federation: World Obesity Atlas, 2023. Available at: https://www.worldobesityday.org/assets/downloads/World_Obesity_Atlas_2023_Report.pdf. Accessed June 2024; 3. World Obesity Federation: World Obesity Atlas, 2024. Available at: https://data.worldobesity.org/publications/WOF-Obesity-Atlas-v7.pdf. Accessed June 2024; 4. Roth GA et al: J Am Coll Cardiol 76:2982;3021; 2020 5. WHO. Fact sheet — CVDs. Available at: https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Accessed June 2024.

Meta-analysis of GLP-1 Receptor Agonist CVOTs: Three-Point MACE

Sattar N et al: Lancet Diabetes Endocrinol 9: 653-622; 2021

Rationale for SELECT

Individuals with overweight or obesity and high cardiovascular risk, but without established diabetes, are candidates for heart disease secondary prevention.


SELECT was not a weight loss study, it was a heart disease prevention study.

Outline

- 1. Background
- 2. Study Design and Baseline Characteristics
- 3. Outcomes:
 - a) Primary Outcome: Cardiovascular Events
 - b) Secondary Outcomes: Weight, Glycemia, Renal
- 4. Implications

SELECT: Study Design

- 17,604 patients
- ≥45 years of age
- BMI ≥27 kg/m²
- CVD
- No diabetes (HbA_{1c} <6.5%)

Lingvay I et al: Obesity 31:111-122; 2023.

SELECT: Primary and Secondary Outcomes

Primary

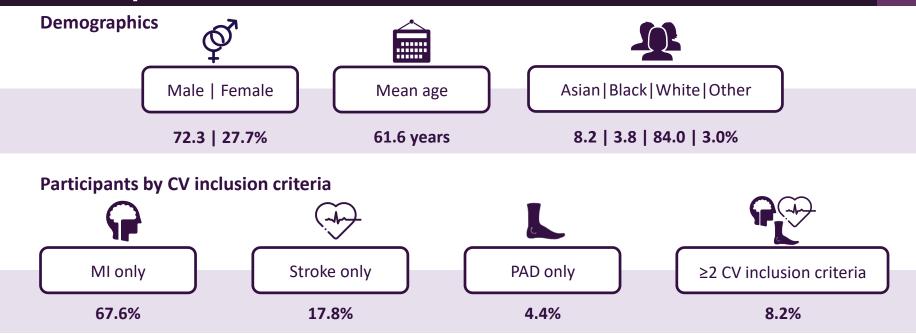
Time from randomization to first occurrence of composite endpoint consisting of:

- CV death
- Non-fatal MI
- Non-fatal stroke

Confirmatory secondary

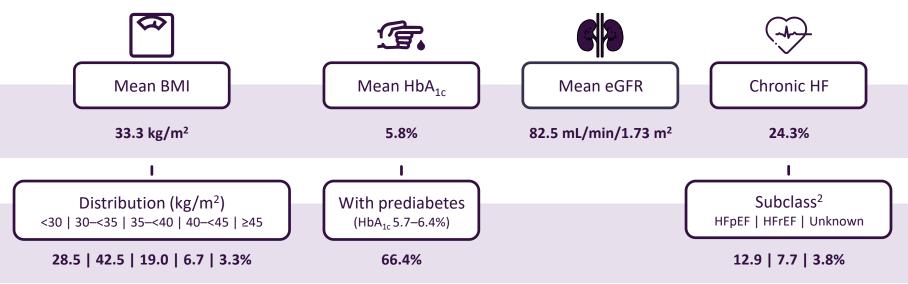
Time from randomization to first occurrence of:

- CV death
- Composite HF endpoint consisting of CV death or hospitalization or urgent medical visit for HF
- All-cause death


Supportive secondary

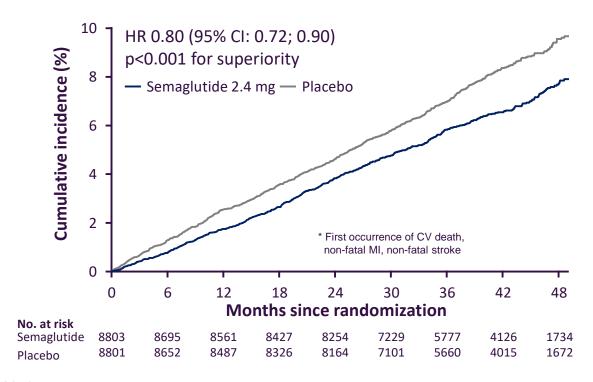
Change from randomization to Year 2 in:

- Body weight (%) and waist circumference (cm)
- Systolic blood pressure (mmHg)
- Lipids (mg/dL): total, HDL and LDL cholesterol, TG
- High-sensitivity
 C-reactive protein
- HbA_{1c} (%, mmol/mol)

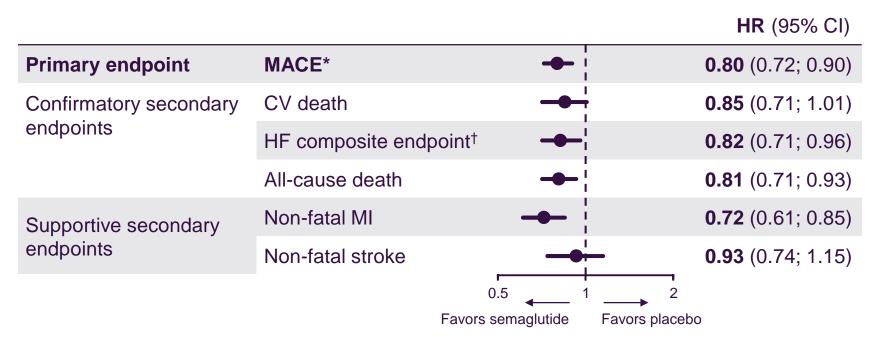

Baseline Characteristics of SELECT Trial Participants

n=17,604

Baseline Characteristics of SELECT Trial Participants



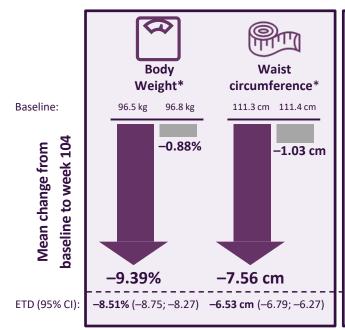
n=17,604

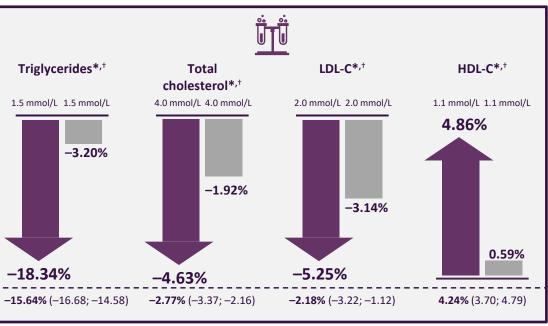

Outline

- 1. Background
- 2. Study Design and Baseline Characteristics
- 3. Outcomes:
 - a) Primary Outcome: Cardiovascular Events
 - b) Secondary Outcomes: Weight, Glycemia, Renal
- 4. Implications

SELECT: Major Adverse CV Outcomes (CV Death, Non-fatal MI, Non-fatal Stroke)

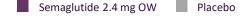
SELECT: Major Adverse Cardiovascular Outcomes


^{*}First occurrence of CV death, non-fatal MI, non-fatal stroke. †Composite of HF hospitalization, urgent HF visit, or CV-related death

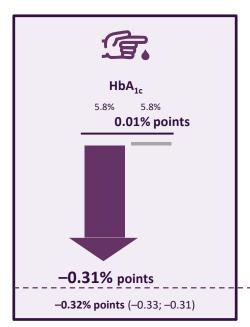

Lincoff AM et al: N Engl J Med 389:2221-2232; 2023

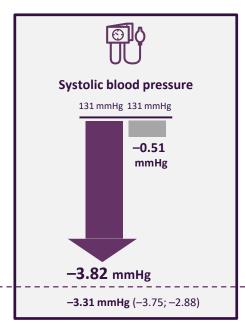
Modifiable Risk Factors Underlying Cardiovascular Disease in SELECT

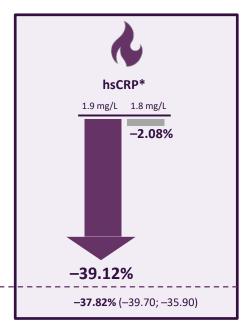
SELECT: Supportive secondary endpoints


Semaglutide 2.4 mg OW Placebo

Modifiable Risk Factors Underlying CVD in SELECT

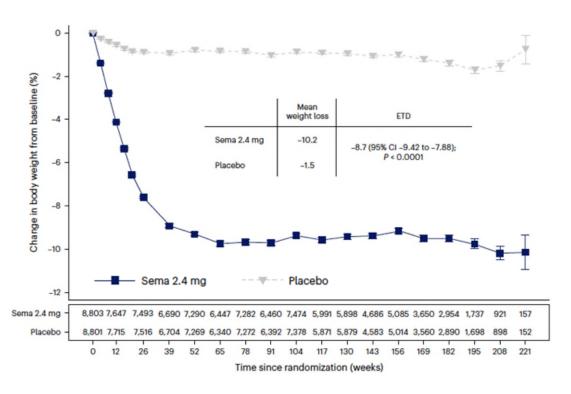


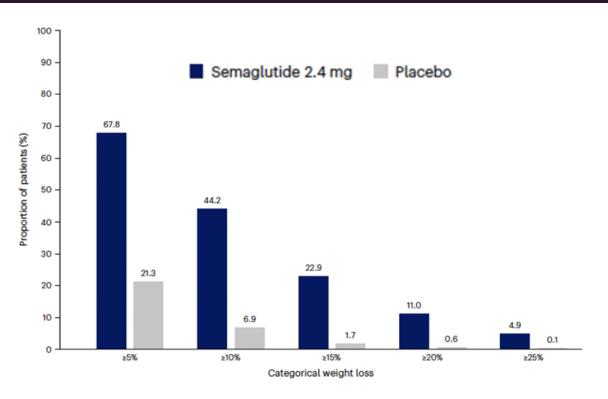




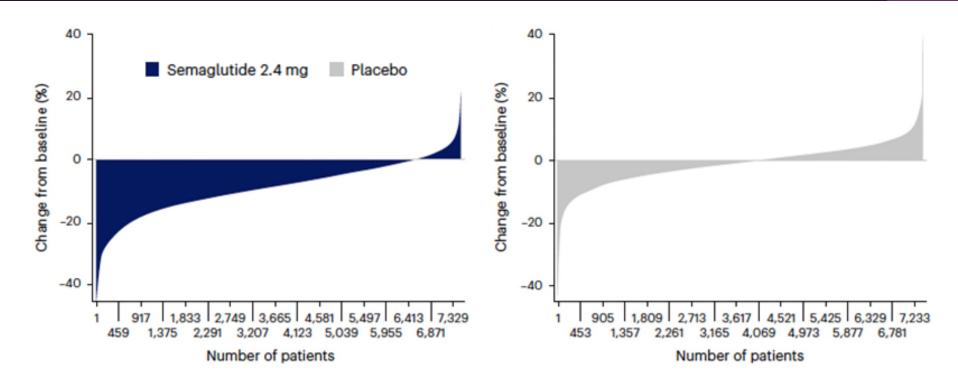
Mean change from baseline to week 104

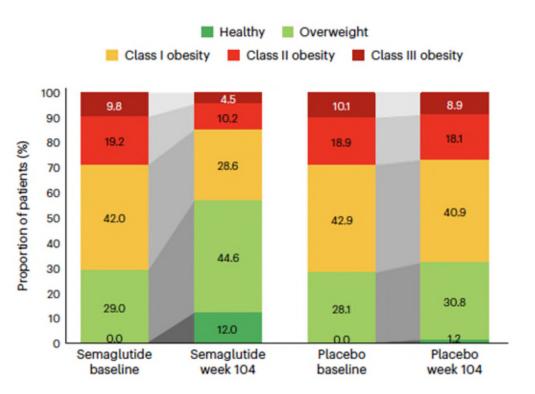
ETD (95% CI):

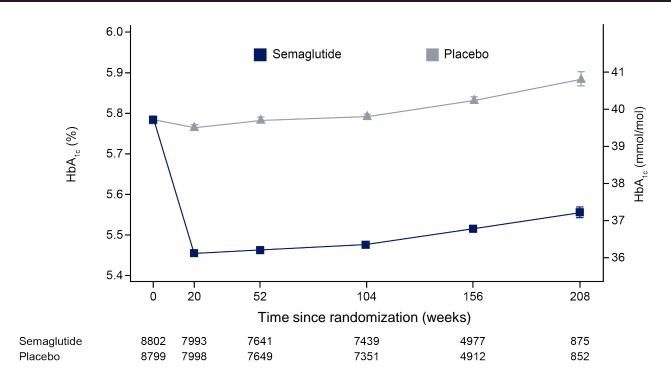


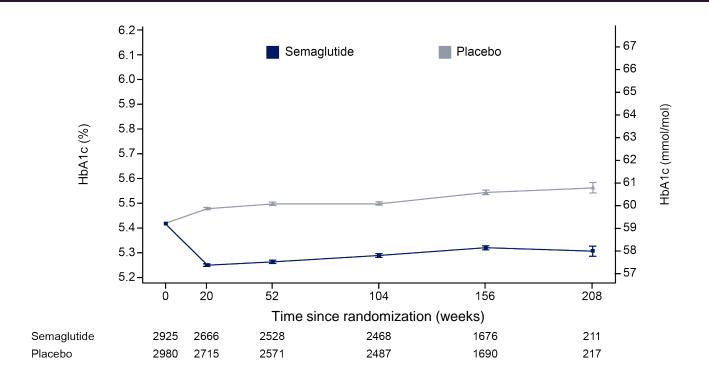

Outline

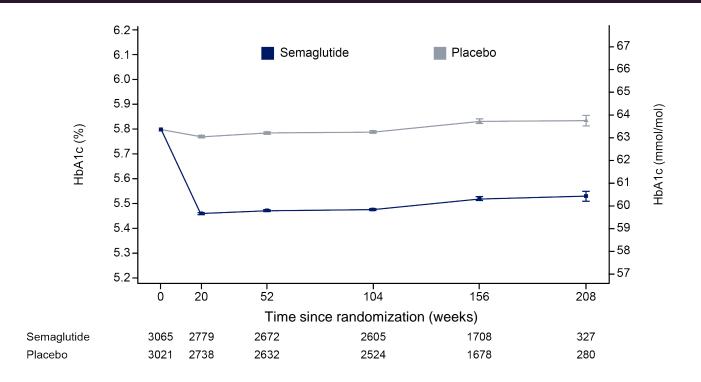
- 1. Background
- 2. Study Design and Baseline Characteristics
- 3. Outcomes:
 - a) Primary Outcome: Cardiovascular Events
 - b) Secondary Outcomes: Weight, Glycemia, Renal
- 4. Implications

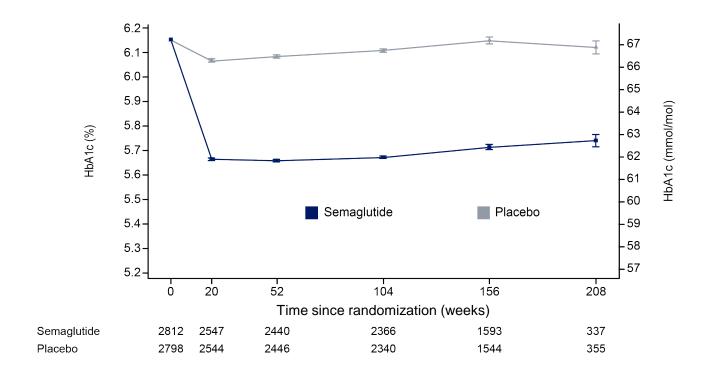

Change in Body Weight Over Time: All Participants

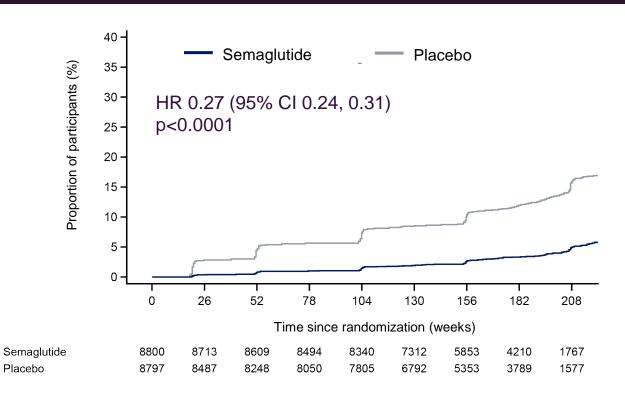

Variation in the Weight Loss Response: Categorical Weight Loss

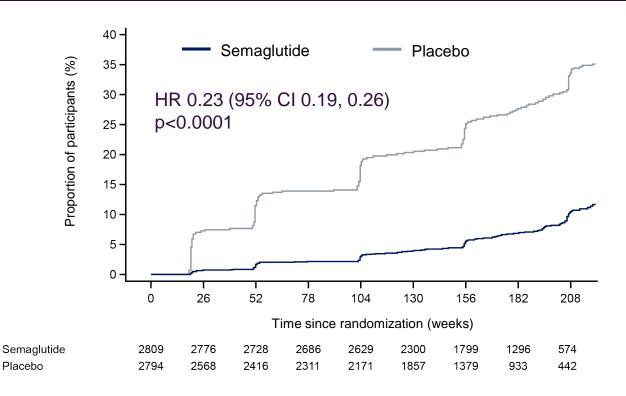

Variation in the Weight Loss Response: Percentage Change for Each Individual


Change in BMI Category from Baseline to Week 104


Change in Glycemia Over Time: All Participants

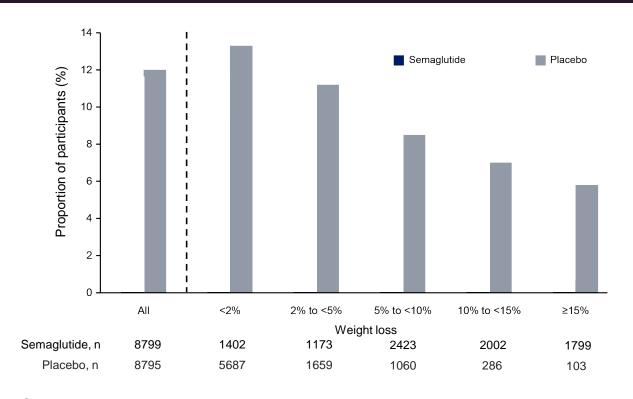

Change in Glycemia Over Time: Baseline HbA1c <5.7%


Change in Glycemia Over Time: Baseline HbA1c 5.7% to <6.0%

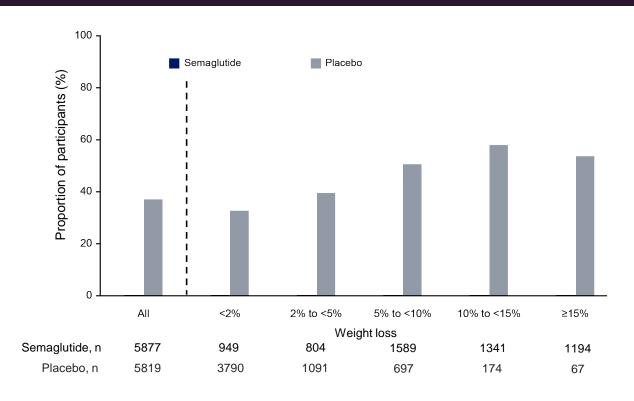

Change in Glycemia Over Time: Baseline HbA1c 6.0% to ≤6.5%

Cumulative Incidence of Diabetes: Baseline HbA1c < 6.5%

Cumulative Incidence of Diabetes: Baseline HbA1c 6.0% to <6.5%



Progression to Diabetes at Week 156: Baseline Body Weight and Glycemia


	Semaglutide	Placebo			
	Events / analyzed participants	Events / analyzed participants	Hazard ratio	HR (95% CI)	p-value
Primary analysis	306/8799	1059/8795	Ю	0.27 (0.24, 0.31)	
Body weight group, kg <90 ≥90 to <100 ≥100 to <115 ≥115	122/3428 55/2157 77/2011 52/1203	376/3454 227/2048 266/2041 190/1252	- 0 -1 - 0 -1	0.31 (0.25, 0.38) 0.22 (0.16, 0.29) 0.28 (0.21, 0.35) 0.27 (0.19, 0.36)	0.3038
BMI group, kg/m ² <30 ≥30 to <35 ≥35 to <40 ≥40 to <45 ≥45	80/2555 124/3691 66/1686 25/579 11/288	251/2468 422/3780 248/1655 92/595 46/297		0.29 (0.23, 0.37) 0.28 (0.23, 0.35) 0.25 (0.19, 0.32) 0.26 (0.16, 0.40) 0.22 (0.11, 0.41)	0.8397
HbA _{1c} group (%) <5.7 ≥5.7 to <6.0 ≥6.0	50/2925 49/3065 207/2809	85/2980 196/3021 778/2794	⊢	0.59 (0.42, 0.84) 0.24 (0.17, 0.33) 0.23 (0.19, 0.26)	<0.0001
roportional hazards model	ention-to-treat) analyzed using with treatment, subgroup, and the subgroup as fixed factions.	nd	1250.0625 0.125 0.25 0.5 Favors semaglutide	1 Favors placebo	

Kahn SE et al: Diabetes Care 47:1350-1359; 2024

Progression to Diabetes at 156 Weeks by Degree of Weight Loss

Regression to Normoglycemia at 156 Weeks by Degree of Weight Loss

Mediation by Body Weight of Time to Regression and Progression at Week 156

	Probability of no event at 156 weeks			Total effect	Direct effect	Percentage	
	Semaglutide	Semaglutide (adjusted)	Placebo	(95% CI)	(95% CI)	mediation (95% CI)	
Time to progression to diabetes (HbA1c ≥6.5%)							
Body weight (kg)	0.972	0.946	0.895	0.077 (0.069, 0.085)	0.051 (0.038, 0.061)	34.5 (25.2, 45.7)	
Time to regression to normoglycemia (HbA1c <5.7%)							
Body weight (kg)	0.205	0.323	0.638	-0.433 (-0.449, -0.415)	-0.316 (-0.338, -0.291)	27.1 (23.3, 31.1)	

Modeling approach – Vansteelandt S et al: Stat Med 38:4828-4840; 2019

Risk of Cardiovascular Events by Baseline HbA1c Category

		Semaglutide	Placebo				
Endpoint	Baseline HbA _{1c} (%)	Events / analyzed participants (%)	Events / analyzed participants (%)			HR (95% CI)	Interaction p-value
MACE	All participants	569/8803 (6.5)	701/8801 (8.0)		⊢● ⊣	0.80 (0.72, 0.90)	
	<5.7	186/2925 (6.4)	228/2980 (7.7)	-		0.82 (0.68, 1.00)	
	5.7-<6.0	186/3065 (6.1)	235/3021 (7.8)	· ·		0.77 (0.64, 0.93)	0.89
	≥6.0–<6.5	197/2812 (7.0)	238/2798 (8.5)	· ⊢		0.81 (0.67, 0.98)	
Expanded	All participants	873/8803 (9.9)	1074/8801 (12.2)		⊢	0.80 (0.73, 0.87)	
MACE*	<5.7	281/2925 (9.6)	346/2980 (11.6)			0.82 (0.70, 0.95)	
	5.7-<6.0	298/3065 (9.7)	361/3021 (11.9)		—	0.80 (0.69, 0.93)	0.93
	≥6.0–<6.5	294/2812 (10.5)	367/2798 (13.1)			0.78 (0.67, 0.91)	
MACE	All participants	710/8803 (8.1)	877/8801 (10.0)		⊢● ⊢	0.80 (0.72, 0.88)	
with	<5.7	243/2925 (8.3)	283/2980 (9.5)			0.87 (0.73, 1.03)	
all-cause	5.7-<6.0	227/3065 (7.4)	278/3021 (9.2)	_	-	0.80 (0.67, 0.95)	0.45
mortality	≥6.0-<6.5	240/2812 (8.5)	316/2798 (11.3)	H		0.74 (0.63, 0.88)	
				ı	i		
			0.25	0.50	1.00	2.00	
			Favors	semaglutide	2.4 mg Favors	placebo	

^{*}MACE plus revascularization or hospitalization for unstable angina.

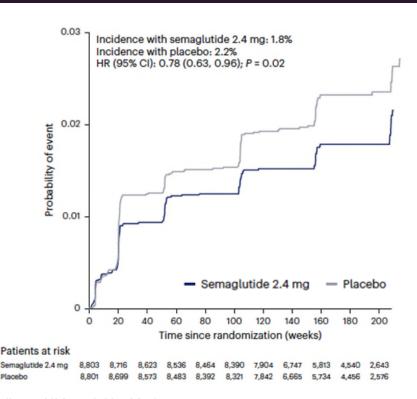
The full analysis set from the in-trial period analyzed using a Cox proportional hazards model with interaction between treatment groups and the relevant HbA_{1c} subgroup as fixed factors.

Lingvay I et al: Diabetes Care 47:1360-1369; 2024

Risk of Cardiovascular Events by Change in HbA1c at Week 20

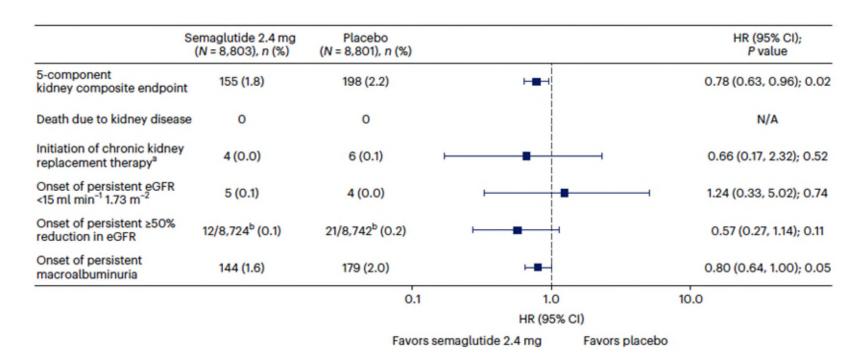
Endpoint	HbA _{1c} change from baseline to week 20 (%-points)	Semaglutide	Placebo		HR (95% CI)	Interaction p-value
		Events / analyzed participants (%)	Events / analyzed participants (%)			
MACE	All participants	569/8803 (6.5)	701/8801 (8.0)	I ●I	0.80 (0.72, 0.90)	
	<-0.3	265/4461 (5.9)	54/745 (7.2)	⊢ ● Ḥ	0.83 (0.62, 1.11)	0.00
	-0.3 to 0.3	246/4419 (6.0)	521/7399 (7.0)	⊢	0.84 (0.72, 0.97)	0.62
	>0.3	6/131 (4.6)	48/552 (8.7)	├	0.55 (0.23, 1.27)	
Expanded	All participants	873/8803 (9.9)	1074/8801 (12.2)	I	0.80 (0.73, 0.87)	
MACE*	<-0.3	398/4461 (8.9)	81/745 (10.9)	⊢ <mark>⊕</mark>	0.82 (0.65, 1.05)	
	-0.3 to 0.3	375/4119 (9.1)	806/7399 (10.9)	i i	0.82 (0.72, 0.93)	0.35
	>0.3	7/131 (5.3)	65/552 (11.8)	——	0.46 (0.21, 1.01)	
MACE or	All participants	710/8803 (8.1)	877/8801 (10.0)	I ⊕ I	0.80 (0.72, 0.88)	
all-cause	<-0.3	324/4461 (7.3)	71/745 (9.5)	⊢⊕ −j	0.77 (0.60, 1.00)	
mortality	-0.3 to 0.3	314/4119 (7.6)	659/7399 (8.9)		0.84 (0.74, 0.96)	0.81
-	>0.3	11/131 (8.4)	63/552 (11.4)	⊢	0.76 (0.40, 1.45)	

0.02 0.03 0.06 0.13 0.25 0.50 1.00 2.00 4.00


Favors semaglutide 2.4 mg Favors placebo

The full analysis set from the in-trial period. Subgroups were defined by changes in HbA_{1c} from baseline to 20 weeks of treatment. Only individuals who reached the week 20 visit are included in this analysis. HRs and 95% CIs were calculated using a Cox proportional hazards model with interaction between treatment groups and the relevant HbA_{1c} subgroup as fixed factors..

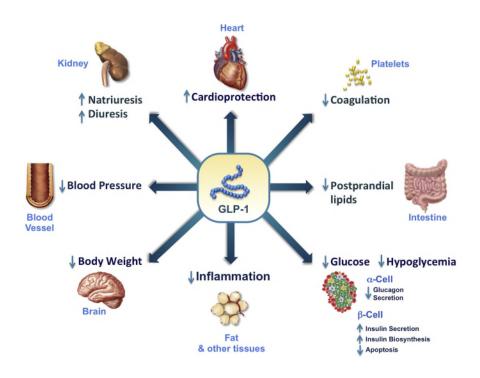
Lingvay I et al: Diabetes Care 47:1360-1369; 2024


^{*}MACE plus revascularization or hospitalization for unstable angina.

SELECT: Cumulative Incidence of Main 5-Component Kidney Composite Endpoints

- Death from kidney causes
- Initiation of chronic kidney replacement therapy (dialysis or transplantation)
- Onset of persistent eGFR <15 ml min⁻¹ 1.73 m⁻²
- Persistent ≥50% reduction in eGFR compared to baseline
- Onset of persistent macroalbuminuria

SELECT: Effect of Semaglutide on the Main 5-Component Kidney Composite Endpoint


Outline

- 1. Background
- 2. Study Design and Baseline Characteristics
- 3. Outcomes:
 - a) Primary Outcome: Cardiovascular Events
 - b) Secondary Outcomes: Weight, Glycemia, Renal
- 4. Implications

Conclusions

- Semaglutide positively impacts the progression of diabetes and regression of normoglycemia in people with prediabetes as well as reducing adverse renal outcomes.
- Thus, in people with overweight or obesity and CVD, treatment with semaglutide would be expected to positively impact glycemia and renal function in addition to CV outcomes.

Glucagon-like Peptide-1 (GLP-1) Has Pleiotropic Effects

Projected Impact of Overweight and Obesity in the United States

What are we going to do to stem the obesity epidemic?

And if GLP-1 receptor agonists provide an approach to reduce body weight and the risks associated with obesity, how are we going to ensure that all those needing them getting access?