Diabetes Research Symposium Sarcopenia with GLP-1/Activin

Jose M. Garcia, MD, PhD

Professor, Department of Medicine

Division of Gerontology & Geriatric Medicine

University of Washington School of Medicine

Director, Geriatric Research, Education and Clinical Center

Director, Clinical Research Unit

VA Puget Sound Health Care System

• Grant/Research Support from Pfizer and Novo Nordisk.

This presentation and/or comments will be free of any bias toward or promotion of the above referenced companies or their product(s) and/or other business interests.

This presentation and/or comments will provide a balanced, non-promotional, and evidence-based approach to all diagnostic, therapeutic and/or research related content.

This presentation has been peer-reviewed and no conflicts were noted.

Cultural Linguistic Competency (CLC) & Implicit Bias (IB)

STATE LAW:

The California legislature has passed <u>Assembly Bill (AB) 1195</u>, which states that as of July 1, 2006, all Category 1 CME activities that relate to patient care must include a cultural diversity/linguistics component. It has also passed <u>AB 241</u>, which states that as of January 1, 2022, all continuing education courses for a physician and surgeon **must** contain curriculum that includes specified instruction in the understanding of implicit bias in medical treatment.

The cultural and linguistic competency (CLC) and implicit bias (IB) definitions reiterate how patients' diverse backgrounds may impact their access to care.

EXEMPTION:

Business and Professions Code 2190.1 exempts activities which are dedicated solely to research or other issues that do not contain a direct patient care component.

This presentation is dedicated solely to research or other issues that do not contain a direct patient care component.

Sarcopenia The progressive loss of muscle mass and strength with a risk of adverse outcomes such as disability, poor quality of life and death.

Sarcopenia affects >50 million people today and will affect >200 million in the next 40 years.

Cruz-Jentoft et al., 2010

Clinical Definition of Sarcopenia

Table 1. Sarcopenia Staging Criteria^a

Stage	Muscle Mass ^b	Muscle Strength $^{\circ}$	Performanced
Presarcopenia	~		
Sarcopenia	~	√ or	\checkmark
Severe Sarcopenia	\checkmark	\checkmark	\checkmark

Falcon, L. J. and M. O. Harris-Love (2017). "Sarcopenia and the New ICD-10-CM Code: Screening, Staging, and Diagnosis Considerations." Fed Pract **34(7): 24-32.**

Table 1. 2018 operational definition of sarcopenia

Probable sarcopenia is identified by Criterion 1. Diagnosis is confirmed by additional documentation of Criterion 2. If Criteria 1, 2 and 3 are all met, sarcopenia is considered severe.

(1) Low muscle strength

(2) Low muscle quantity or quality

(3) Low physical performance

	Men	Women							
Grip strength (kg)	<27	<16							
Appendicular skeletal muscle mass divided by height ² (kg/m ²)	<7	<5·5							
Gait speed (m/sec)	≤0.8	≤0.8							
Timed Up and Go test (sec)	≥20	≥20							
Values shown are those recommended by the European Working Group on Sarcopenia in Older People (EWGSOP2). ¹⁵									
Table: Reference values used to diagnose sarcopenia									

Cruz-Jentoft 2019

The prevalence is variable based on the methods (10-27%, mean age: 68.5 years)

Sarcopenic Obesity

- Diagnostic criteria for sarcopenic obesity are yet to be established but prevalence of sarcopenic obesity is ~11% in those >60 yo
- Obese elderly individuals, have decreased muscle performance despite having increased muscle mass
- Potential mechanisms include IR, inflammation, myosteatosis, oxidative stress, hormonal changes and mitochondrial dysfunction, among others.
- Treatments for sarcopenic obesity are insufficient and limited to lifestyle modifications

Sarcopenic Obesity

Normal Muscle Mass

ID	Weight (kg)	BMI	Muscle Area (cm ²)	Sk. Muscle Index	Intramuscular Fat Area	Visceral Fat Area	Subcutaneous Fat Area
34	95.5	30.3	<mark>135.9</mark>	<mark>43.0 (low)</mark>	<mark>17.71</mark>	402.8	159.4
76	96.0	28.8	178.4	53.3	4.86	318.9	87.49

Sarcopenic Obesity Increases the Risk of CVD more than Sarcopenia and Obesity Alone

Jiang et al., Clinical Nutrition, 2024

Obesity Treatment in Older Patients and Sarcopenia Outcome

- Energy restriction with a hypocaloric diet results in the loss of approximately one-quarter of lean mass per unit weight, which could worsen sarcopenia and osteopenia
- Calorie restriction without resistance training leads to the loss of muscle mass and loss of handgrip strength of up to 4.6% and 1.7 kg, respectively

Clinical Endpoints

Clinical (Direct) Endpoints

- Measures of how a patient feels (i.e. fatigue, quality of life), or functions (i.e. mobility, activities of daily living), or survives
 - Patient Reported Outcome (PRO) measures must be validated
- Decrease the chances of developing a condition or disease complication that is itself apparent to the patient and is undesirable (hospitalization, tolerance to treatment)

Surrogate endpoints

 Biomarkers: a validated outcome that is not a direct measurement of clinical benefit but predicts clinical benefit

Endpoints should be assessed in the target population and the magnitude of effect must be large enough to be <u>clinically meaningful</u>

FDA.gov

GLP-1R Agonists

- Activation of GLP-1R have well-established benefits on a range of metabolic and cardiovascular outcomes
- GLP-1 may directly enhance skeletal muscle by improving microvascular recruitment, glucose uptake, inflammation and mitochondrial biogenesis via AMPK
- A hypocaloric diet results in the loss of onequarter of lean mass/unit weight, which could worsen sarcopenia and osteopenia
- Calorie restriction without resistance training leads to the loss of muscle mass and handgrip strength of up to 4.6% and 1.7 kg, respectively

Drucker D. Diabetes Care 2024

GLP-1R Agonists

- Body composition in people with T2DM treated with GLP-1RA have not revealed consistent evidence for disproportionate loss of lean mass or impaired muscle strength
- Semaglutide and/or tirzepatide decrease FM and LBM (FM>LBM) whereas PROs (exercise capacity, QOL) are stable or improved

			Difference between				N=95	N=45	
End Point	Semaglutide (N=1306)	Placebo (N=655)	Semaglutide and Placebo (95% Cl)†	Odds Ratio	P Value	Body composition change from baseline to			
Coprimary end points assessed in the overall						week 68 (DEXA)			
population						Total fat mass			
Percent body-weight change from baseline to wk 68	-14.85	-2.41	-12.44 (-13.37 to -11.51)		<0.001	Kg change	-10.40	-1.17	ETD: -9.23 [-12.72: -5.74]
Participants with body-weight reduction ≥5% at wk 68	86.4	31.5		11.2 (8.9 to 14.2)	<0.001	Percentage-points change in total fat mass	-4.19	-0.19	ETD: -4.00 [-6.27; -1.73]
— % 1						proportion			
points assessed in the overall population						Regional visceral fat mass [¶]			
Participants with body-weight reduction ≥10% at wk 68 — %†	69.1	12.0		14.7 (11.1 to 19.4)	<0.001	Kg change	-0.47	-0.03	ETD: -0.45 [-0.60; -0.30]
Participants with body-weight reduction ≥15% at wk 68 — % ‡	50.5	4.9		19.3 (12.9 to 28.8)	<0.001	Percentage-points change in regional visceral fat mass proportion [∥]	-2.65	0.58	ETD: -3.23 [-5.35; -1.10]
Change from baseline to wk 68						Total lean body mass			
Waist circumference — cm	-13.54	-4.13	-9.42 (-10.30 to -8.53)		<0.001	Kg change	-6.92	-1.48	ETD: -5.44 [-7.07; -3.81]
Systolic blood pressure — mm Hg	-6.16	-1.06	-5.10 (-6.34 to -3.87)		<0.001	Percentage-points change in total lean body	3.61	0.11	ETD: 3.50 [1.35; 5.64]
SF-36 physical functioning score	2.21	0.41	1.80 (1.18 to 2.42)		<0.001	mass proportion [§]			
IWQOL-Lite-CT physical function score	14.67	5.25	9.43 (7.50 to 11.35)		<0.001				

Wilding et al. N Engl J Med 2021

GLP-1R Agonists

Jastreboff et al. N Engl J Med 2022

			Difference between				N=95	N=45	
End Point	Semaglutide (N=1306)	Placebo (N=655)	Semaglutide and Placebo (95% Cl)†	Odds Ratio	P Value	Body composition change from baseline to			
Coprimary end points assessed in the overall						week 68 (DEXA)			
Porcent body weight change	14.85	2 /1	-12 // (13 37 to 11 51)		<0.001	Total fat mass			
from baseline to wk 68	-11.05	-2.41	12.44 (-13.57 to -11.51)		<0.001	Kg change	-10.40	-1.17	ETD: -9.23 [-12.72: -5.74]
Participants with body-weight	86.4	31.5		11.2 (8.9 to 14.2)	<0.001				
reduction ≥5% at wk 68 — %‡						Percentage-points change in total fat mass	-4.19	-0.19	ETD: -4.00 [-6.27; -1.73]
Confirmatory secondary end						proportion ⁹			
points assessed in the overall population						Regional visceral fat mass ¹			
Participants with body-weight	69.1	12.0		14.7 (11.1 to 19.4)	<0.001	Ka chango	0.47	0.02	ETD: 0 45 [-0 60: 0 20]
reduction ≥10% at wk 68 — % 1						Kg change	-0.47	-0.05	ETD0.45 [-0.60, -0.50]
Participants with body-weight	50.5	4.9		19.3 (12.9 to 28.8)	<0.001	Percentage-points change in regional visceral	-2.65	0.58	ETD: -3.23 [-5.35; -1.10]
reduction ≥15% at wk 68 — % †						fat mass proportion ^{II}			
Change from baseline to wk						Total lean body mass			
68						Total ican body mass			
Waist circumference — cm	-13.54	-4.13	-9.42 (-10.30 to -8.53)		<0.001	Kg change	-6.92	-1.48	ETD: -5.44 [-7.07; -3.81]
Systolic blood pressure —	-6.16	-1.06	–5.10 (–6.34 to –3.87)		<0.001	Percentage-points change in total lean body	3.61	0.11	ETD: 3.50 [1.35: 5.64]
SF-36 physical functioning	2.21	0.4]	1.80 (1.18 to 2.42)		<0.001	mass proportion [§]			
score									
IWQOL-Lite-CT physical function score	14.67	5.25	9.43 (7.50 to 11.35)		<0.001				

Wilding et al. N Engl J Med 2021

Activin and Muscle Health

- Myostatin and activin A are members of the (TGF-β) family that negatively regulate muscle growth by binding to the activin type II receptors (ActRIIA and ActRIIB) on myocytes
- By activating Smad2/3, they lead to protein degradation and inhibit protein synthesis, inhibit satellite cell activation and promote the ubiquitinproteasome system and autophagy
- Pharmacological inhibitors could target muscle mass and strength, improve insulin sensitivity, reduce adiposity, and attenuate systemic inflammation

Activin Receptor Antagonists

- Three mechanisms of action have been shown to increase LBM: 1) antiligand (primarily to myostatin), 2) a soluble ActRIIB, and 3) a receptor antagonist
- Muscle hypertrophy is enhanced by the blockade of ActRIIA and ActRIIB achieved with bimagrumab, with muscle mass increasing approximately 2fold that seen with myostatin inhibition alone
- Bimagrumab is an antagonist that improves LBM but not function when given to sarcopenic older individuals with adequate nutritional support, vit.
 D and light exercise
- In diabetics with a BMI >25, bimagrumab decreased FM (~20%) without impacting Lean Mass or grip strentgh

Activin Receptor Antagonists

B 6-Minute walk test

C Gait speed

Network Open

RCT: Effect of Bimagrumab vs Placebo on Body Fat Mass Among Adults With Type 2 Diabetes and Obesity

31 Placebo

5% dextrose solution, IV

infusion over 30 minutes, every

200 Participants randomized

67 Placebo

With healthy diet

and home exercise

4 weeks for 48 wk (12 doses)

POPULATION 40 Men, 35 Women

Adults with BMI of 28-40, type 2 diabetes, glycated hemoglobin levels of 6.5%-10.0%, and stable body weight of 65-140 kg Mean (SD) 60.4 (7.7) y

SETTINGS / LOCATIONS

9 sites, 8 in

the US and 1

in Wales, UK

PRIMARY OUTCOME

27 Bimagrumab

Bimagrumab 10 mg/kg, up to a

maximum of 1200 mg, in 5%

dextrose solution. IV infusion

over 30 minutes, every 4 wk

INTERVENTION

for 48 weeks (12 doses)

INTERVENTION

58 Individuals randomized and analyzed

Primary end point was least squares mean change from baseline in total body fat mass in kg at 48 wk

FINDINGS

Total body fat mass decreased by 21% in patients receiving bimagrumab vs 0.5% in those treated with placebo (7.31 kg difference)

Total body fat mass decrease at 48 wk

$$\label{eq:bigstar} \begin{split} & \text{Bimagrumab group: } 21\% \left(-7.49 \, \text{kg}, 80\% \, \text{Cl}, -8.33 \, \text{to} -6.64 \, \text{kg}\right) \\ & \text{Placebo group: } 0.5\% \left(-0.18 \, \text{kg}, 80\% \, \text{Cl}, -0.99 \, \text{to} \, 0.63 \, \text{kg}\right) \\ & \text{Difference: } -7.31 \, \text{kg} \left(80\% \, \text{Cl}, -8.48 \, \text{to} -6.14 \, \text{kg}; P < 0.001\right) \end{split}$$

Heymsfield SB, Coleman LA, Miller R, et al. Effect of bimagrumab vs placebo on body fat mass among adults with type 2 diabetes and obesity: a phase 2 randomized clinical trial. JAMA Netw Open. 2021;4(1):e2033457. doi:10.1001/jamanetworkopen.2020.33457

Network Open.

RCT Bimagrumab vs Optimized Standard of Care for Treatment of Sarcopenia in Older Adults

POPULATION 71 Men 109 Women

Community-dwelling older adults with sarcopenia **Median (range) age, 79 (70-95) y**

SETTINGS / LOCATIONS

) age, 79 (70-95) y 113 Bimagrumab infusion

CATIONS type II receptor antagonist) with healthy diet and home exercise

Change in Short Physical Performance Battery (SPPB) total score (scale 0-12, higher score reflect greater function) after 6 mo of treatment

FINDINGS

Both groups had improved SPPB with 6 mo of treatment, but there was no statistically significant difference in SPPB between them (P = .13).

Mean SPPB score increase at 6 mo: bimagrumab: 1.34 (95% CI, 0.90-1.77) Placebo: 1.03 (95% CI, 0.53-1.52)

Rooks D, Swan T, Goswami B, et al. Bimagrumab vs optimized standard of care for treatment of sarcopenia in community-dwelling older adults: a randomized clinical trial. JAMA Netw Open. 2020;3(10):e2020836. doi:10.1001/jamanetworkopen.2020.20836

700 mg intravenous infusion (Activin

(D AMA

Future Directions

- Combination therapies
 - Tremogrumab/Garetosmab (myostatin/activin A MABs)+semaglutide (NCT06299098)
 - Bimagrumab and Semaglutide (NCT05616013)

Sponsor	Drug	Target	Details
University of Texas Health Science Center at San Antonio	Metformin	AMPK activator	Phase 2; <u>NCT02570672</u>
Biophytis	Ruvembri (BIO101)	MAS receptor agonist	Phase 2b
BioAge	Azelaprag (BGE-105) + Mounjaro	Apelin receptor agonist + GLP-1/GIP receptor agonist	Phase 2
Biohaven	Taldefgrobep alfa	Myostatin inhibitor	Phase 3 for spinal muscular atrophy
Immunis	IMMUNA	Non-cell-based secretome product	Phase 1/2a; <u>NCT05211986</u>
Juvena	JUV-161	Non-cell-based secretome product	IND-enabling
MyMD	MYMD-1	TNF inhibitor	Phase 2

GLP-1, glucagon-like peptide-1; GIP, glucose-dependent insulinotropic polypeptide; IND, Investigational New Drug; TNF, tumor necrosis factor. Source: company websites, Clinicaltrials.gov.

Adding myostatin blockade to semaglutide leads to greater fat loss and less lean mass loss compared to semaglutide monotherapy in obese non-human primates²

Mastaitits J et al, ADA 2023 https://investor.regeneron.com/ Nat Biotechnology, 2024

8

Α

Mouse sarcopenia model reveals sex- and age-specific differences in phenotypic and molecular characteristics

Haiming L. Kerr,^{1,2} Kora Krumm,^{1,2} Barbara Anderson,^{1,2} Anthony Christiani,^{1,2} Lena Strait,^{1,2} Theresa Li,^{1,2} Brynn Irwin,^{1,2} Siyi Jiang,^{1,2} Artur Rybachok,^{1,2} Amanda Chen,^{1,2} Elizabeth Dacek,^{1,2} Lucas Caeiro,^{1,2} Gennifer E. Merrihew,³ James W. MacDonald,⁴ Theo K. Bammler,⁴ Michael J. MacCoss,³ and Jose M. Garcia^{1,2}

'Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA. ²Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA. ³Department of Genome Sciences, and ⁴Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA.

Muscle Mass, Function and QOL in Prostate Cancer patients

- Baseline ALM is directly associated with strength but inversely associated with endurance and PROs
- Cachexia and frailty are prevalent in this population
- For frail individuals, weight loss is the most prevalent component of the syndrome

N (%)		N=59
Age (yrs.) ¹		69.3 (6.9)
Body Weight (kg) ¹		87.2 (16.0)
Body Mass Index (kg/m ²) ¹		27.8 (4.1)
Tumor stage		
	2	16 (27.1)
	3	24 (40.7)
	4	19 (32.2)

Mean (SD)	
Body Composition (DEXA)	N=59
Total Mass (kg)	87.5 (16.0)
Total Fat (kg)	25.9 (8.5)
Fat Percent (%)	29.0 (5.4)
Lean Mass (kg)	58.9 (9.0)
ALM (kg)	25.2 (4.0)
ASMI (kg/m ²)	8.0 (1.0)

				N	Auscle Er	idurance		Muscle	Strength		FAG	CT-P		EORTC QLQ C-30						
	BW	ALM	Fat mass	VO ₂ Peak	6MWT	Steps/d	TotACT /d	SCP	Mean HGS	PWB	FWB	ADD	Total	QOL	PF	RF	SF	Fatigue	Pain	Dyspnea
BW		.78**	.88**	37**					.30*	37**		29*			34**	30*	37**	.31*		.33*
ALM			.48**					.34*	.36**	42**		28*			26*	27*	44**	.33*		.36**
at Mass				39**												27*				
O ₂ Peak					.69**	.43**	.50**	.38**	.31*	.42**	.29*	.36**	.28*	.44**	.57**	.43**	.43**	38**	40**	39**
6MWT						.42**	.53**	.59**	.38**	.47**	.26*	.36**	.26*	.43**	.66**	.47**	.42**	48**	40**	47**
Steps/d							.91**			.38**		.33*	.30*		.51**	.38**	.30*	45**	42**	28*
ot ACT/d								.40**	.30*	.37**		.35**	.29*		.54**	.38**		43**	39**	29*
SCP									.53**						.36**					
ean HGS																				
tate 3u ^A															.32*					
laximum ATP ^B	51**	41*	53**	.57**	.57**		.39*		37*	.44*				.42*	.42*	.54**	.42*	41*		
Muscle Size ^B								.42*	.59**											
Muscle trength ^B								.40*												
Muscle durance ^B								.44*										40*		
durunee									Spearman	's tho co	relation									
									opeumun	Sino coi	Telution									
						-1		5		0		.5		1						Table 2
	E	Baselin	e Pros	tate C	ancer	Patien	ts Asse	essmen	ıt			_								
					N=59							Fre	eque	ncy o	t Cor	npon	ents	by Pr	ieno	type
															Cha	racte	eristic	:		
					Cashari										V	Veakn	ess			
					4	a										\wedge				
					•											\wedge				
				15								Weigł	nt Los	s					Slow	ness
		Pr	e & frai	lty 🖕		• S	arcopen	ia							\mathcal{I}					
			10		1												//			
															\		/	/		

Exhaustion

'Low Activity

Final Thoughts

- Lean mass ≠ muscle mass
- Muscle mass ≠ muscle function
- Muscle function is a multidimensional construct
 - Subjective (PROs for Physical function, fatigue)
 - Objective (Strength and power [HGS, SCP], endurance [6MWT, VO₂ Peak], balance)
- More clinical trials are needed to establish the effects of GLP-1and activin-related therapies to determine their impact on sarcopenia-related clinically meaningful outcomes and indications

U.S. Department of VA(BX002807), DOD (PC170059), and NIH (R01CA239208, R01AG061558)

Paradigms of Frailty

- Increased vulnerability to stressors and adverse outcomes seen often late in life
 - Frailty as accumulation of deficits: "the more things that are wrong, the more likely that person is frail" (Rockwood 2007)
 - Frailty as a biologic syndrome of decreased reserve resulting from cumulative declines across multiple physiologic systems (Fried et al. 2001)

Physical Frailty Phenotype (PFP)

- Weight loss (more than 10 lbs or 5% over the previous year)
- Weakness (grip strength lowest 20% by gender, BMI)
- Exhaustion (self-report)
- Walking Speed (>6-7s to walk 15 feet)
- Physical Activity (<3830 or 2709 Kcals/week)
 - Not Frail: 0
 - Intermediate: 1-2
 - Frail: ≥3

Table 1 46 deficits included in frailty index.

Comorbidities

- Stroke
- Thyroid condition
- Cancer
- Heart attack
- Heart disease
- Ever had high blood pressure
- Angina/angina pectoris
- Osteoporosis
- Diabetes
- Arthritis
- Ever had broken hip
- Cataract operation
- Weak/failing kidneys

Function

- Difficulty using fork and knife
- Difficulty dressing yourself
- Difficulty getting in/but of bed
- Difficulty standing up from armless chair
- Difficulty managing money
- Difficulty preparing meals
- Difficulty standing for long periods of time
- Difficult stooping, crouching, kneeling
- Difficulty grasping/holding small objects
- Difficulty lifting or carrying

Signs/symptoms

- Heart rate at rest
- Systolic blood pressure
- Cough regularly
- Leaked/lost control or urine General vision
- Difficulty seeing steps/curbs
- in dim light
- General hearing
- Confusion or inability to remember things

Lab values

- Homocysteine (µmol/L)
- Folatc, scrum (nmol/L)
- Glycohemoglobin (%)
- Red blood cell count (million cells/ μ L)
- Hemoglobin (g/dL)
- Red cell distribution width (%)
- Lymphocyte percent (%)
- Segmented neutrophils percent (%)

Other

- Medications
- Self-reported health
- Health compared to 1 year ago
- Frequency of healthcare use
- Overnight hospital stays
- Difficulty pushing or pulling large objects
- Difficult attending social event

Mouse sarcopenia model reveals sex- and age-specific differences in phenotypic and molecular characteristics

Haiming L. Kerr,^{1,2} Kora Krumm,^{1,2} Barbara Anderson,^{1,2} Anthony Christiani,^{1,2} Lena Strait,^{1,2} Theresa Li,^{1,2} Brynn Irwin,^{1,2} Siyi Jiang,^{1,2} Artur Rybachok,^{1,2} Amanda Chen,^{1,2} Elizabeth Dacek,^{1,2} Lucas Caeiro,^{1,2} Gennifer E. Merrihew,³ James W. MacDonald,⁴ Theo K. Bammler,⁴ Michael J. MacCoss,³ and Jose M. Garcia^{1,2}

'Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA. 2Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA. ³Department of Genome Sciences, and ⁴Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA.

S S

					luscle En	ndurance Muscle Strength			FACT-P			EORTC QLQ C-30								
	BW	ALM	Fat mass	VO ₂ Peak	6MWT	Steps/d	TotACT/ d	SCP	Mean HGS	PWB	FWB	ADD	Total	QOL	PF	RF	SF	Fatigue	Pain	Dyspnea
BW		.78**	.88**	37**					.30*	37**		29 [*]			34**	30*	37**	.31*		.33*
ALM			.48**					.34*	.36**	42**		28*			26*	27*	44**	.33*		.36**
Fat Mass				39**												27*				
VO ₂ Peak					.69**	.43**	.50**	.38**	.31*	.42**	.29*	.36**	.28*	.44**	.57**	.43**	.43**	38**	40**	39**
6MWT						.42**	.53**	.59**	.38**	.47**	.26*	.36**	.26*	.43**	.66**	.47**	.42**	48**	40**	47**
Steps/d							.91**			.38**		.33*	.30*		.51**	.38**	.30*	45**	42**	28*
Tot ACT/d								.40***	.30 [*]	.37**		.35**	.29 [*]		.54**	.38**		43**	39**	29*
SCP									.53**						.36**					
Mean HGS																				
State 3u ^A															.32*					
Maximum ATP ^B	51**	41*	53**	.57**	.57**		.39*		37*	.44*				.42*	.42*	.54**	.42*	41*		
Muscle Size ^B								.42*	.59**											
Muscle Strength ^B								.40*												
Muscle Endurance ^B								.44*										40*		

Spearman's rho correlation

Six-month Change

QLQ C-30

X

	▲ %BW	▲ %BMI	▲ %DEXA	▲ %DEXA	▲ %VO ₂	▲ % 6MWT			▲ FACT-P	 ▲ PF	▲ RE	▲ CF
			Fat	ALM	Peak		A /01105	▲ /03Cl	ADD	— 1 1		
BW				35**								
BMI	32*	30 [*]		43**		28*						
Fat Mass				33*	.34*							
ALM												
VO ₂ Peak				.33*		.52**				.37**		.28*
6MWT							.27*					
HGS												
SCP												
State 3				.37*				.38*	.40*		.33*	
State 3u									.42**			
Maximum ATP				.40*					.41*	.40*		
Muscle Endurance				.43*								

Spearman's rho correlation

-1	5	0	.5	1

▲%▲ Maximun▲ Muscle▲ MuscleSCPATPSizeStrength ▲ %DEXA ▲%DEXA ▲%VO₂ ▲ % HGS <u>▲%</u> ▲ Appetite ▲ PWB ▲ ADD ▲ PF ▲ RF ▲ CF ▲ SF ▲ Total <u>6MWT</u> Peak Fat ALM Strength Endurance Loss .74** .71** .32* .30^{*} .44*` -.35*** **▲**%BMI .36** .56* -.37* ▲ %DEXA Fat ▲ %DEXA .41** .36** .28* .34* .29* -.53** ALM .37* -.58* .38* ▲%VO2 Peak .38** ▲ % HGS .49* .38** -.36*** ▲% 6MWT .32* -.31* ▲% SCP ▲ Maximun .46* -.42* -.41* -.48* ATP ▲ Muscle Size ▲ Muscle Strength Endurance

Six-month Change

FACT-P

QLQ C-30

Effect of Bimagrumab on Body Fat Mass Among Adults With Type 2 Diabetes and Obesity

Table 2. Major End Points				
End Point	Change (80% CI) [Participants, No.] ^a			
	Bimagrumab ^b	Placebo ^b	Difference ^b	P value
Primary				
FM, kg	-7.49 (-8.33 to -6.64) [26]	-0.18 (-0.99 to 0.63) [29]	-7.31 (-8.48 to -6.14)	<.001
Secondary				
Lean mass, <mark>k</mark> g	1.70 (1.14 to 2.26) [26]	-0.44 (-0.97 to 0.09) [29]	2.14 (1.36 to 2.93)	<.001
Body weight, kg	-5.90 (-7.08 to -4.71) [26]	-0.79 (-1.92 to 0.33) [30]	-5.10 (-6.74 to -3.47)	<.001
BMI	-2.19 (-2.60 to -1.78) [26]	-0.28 (-0.67 to 0.11) [30]	-1.91 (-2.48 to -1.34)	<.001
Waist circumference, cm	-9.00 (-10.3 to -7.68) [26]	0.45 (-0.79 to 1.69) [30]	-9.46 (-11.3 to -7.64)	<.001
Waist-to-hip ratio	-0.05 (-0.06 to -0.04) [26]	0.01 (0.00 to 0.02) [30]	-0.06 (-0.08 to -0.04)	<.001
HbA _{1c} , %	-0.76 (-1.05 to -0.48) [26]	0.04 (-0.23 to 0.31) [30]	-0.80 (-1.20 to -0.41)	.005
HOMA2, week 36	-0.09 (-0.44 to 0.25) [25]	0.57 (0.24 to 0.90) [27]	-0.66 (-1.14 to -0.18)	.08
QUICKI, week 36	0.01 (0.01 to 0.01) [26]	0.00 (0.00 to 0.00) [30]	0.01 (0.00 to 0.01)	.03
Matsuda Index	3.15 (2.39 to 3.91) [26]	1.78 (1.05 to 2.51) [28]	1.37 (0.31 to 2.43)	.10
Exploratory				
Hepatic fat fraction, %				
Week 24	-4.60 (-6.07 to -3.12) [18]	0.23 (-1.61 to 2.08) [11]	-4.83 (-7.20 to -2.46)	.006
Week 48	-7.00 (-8.58 to -5.43) [5]	-2.33 (-4.16 to -0.51) [5]	-4.67 (-7.09 to -2.25)	.01
Abdominal SAT, L				
Week 24	-0.97 (-1.37 to -0.56) [18]	-0.14 (-0.65 to 0.37) [11]	-0.83 (-1.48 to -0.18)	.05
Week 48	-1.71 (-2.40 to -1.03) [5]	-0.52 (-1.30 to 0.26) [4]	-1.19 (-2.23 to -0.15)	.07
Abdominal VAT, L				
Week 24	-1.49 (-1.69 to -1.29) [18]	0.22 (-0.03 to 0.48) [11]	-1.71 (-2.04 to -1.39)	<.001
Week 48	-1.52 (-2.42 to -0.62) [5]	-0.01 (-1.05 to 1.03) [4]	-1.51 (-2.87 to -0.14)	.08

Sarcopenia

- "Progressive loss of muscle mass and strength with a risk of adverse outcomes (disability, poor QOL, and death)"
- <u>Public health issue</u> particularly in the elderly
- Pathophysiology and different phenotypes are incompletely characterized
- Many pathways regulate muscle mass, but **function is the clinically-meaningful outcome**
- Anabolic interventions maintain mass, but do not ameliorate loss of function
- There are no approved pharmacologic interventions for sarcopenia

Risk Factors for Frailty

- Older age
- Lower educational level
- Current smoker
- African-American or Hispanic ethnicity
- Not married
- Depression, or use of antidepressants
- Intellectual disability

Figure 2. Prevalence of Chronic Kidney Disease (CKD) Stages by Age Group in NHANES 1988-1994 and 1999-2004

Cancer, Renal Dz and Aging

NHANES indicates National Health and Nutrition Examination Surveys. ^aThere were no cases in 1988-1994.

Coresh, 2007, seer.cancer.gov

Obesity treatment and frailty

Villareal et al. N Engl J Med. 2017

Population aged 80 or over World, 1950-2050

(UN 2001)

Obesity Trends* Among U.S. Adults BRFSS, 1990, 1998, 2007 (*BMI ≥30, or about 30 lbs. overweight for 5'4" person)

40

CHF, COPD and Aging

Age-specific prevalence in men

Ceia, 2002 Yannick, 2009

Diseases associated with increased risk of frailty • COPD

- Chronic inflammatory diseases
- Hip fractures
- Pressure ulcers and chronic wounds
- AIDS, Tuberculosis, other chronic infections

- ESRD
- Diabetes
- Dementia
- Depression
- Advanced cancer

Frailty Trajectory

Ferrucci L et al. Biomarkers of frailty in older persons. J Endocrinol Invest 2002;25(10 Suppl):10-15

Physical Frailty Phenotype (PFP)

- Weight loss (more than 10 lbs or 5% over the previous year)
- Weakness (grip strength lowest 20% by gender, BMI)
- Exhaustion (self-report)
- Walking Speed (>6-7s to walk 15 feet)
- Physical Activity (<383 or 270 Kcals/week)
 - Not Frail: 0
 - Intermediate: 1-2
 - Frail: ≥3

Fried et al., Frailty in older adults: evidence for a phenotype, J Gerontol A Biol Sci Med Sci, 2001.

Frailty Index

- Ratio of deficits present out of the total number of possible deficits, gives a continuous score from total fitness (0) to total frailty (1)
 - 0-0.1: not frail
 - 0.11-0.2: vulnerable
 - 0.21-0.45: frail
 - 0.46-1: Most frail

Blodgett et al. Archives of Gerontology and Geriatrics 60 (2015) 464-470

Table 1

46 deficits included in frailty index.

- Comorbidities
- Stroke
- Thyroid condition
- Cancer
- Heart attack
- Heart disease
- Ever had high blood pressure
- Angina/angina pectoris
- Osteoporosis
- Diabetes
- Arthritis
- Ever had broken hip
- Cataract operation
- Weak/failing kidneys

Function

- Difficulty using fork and knife
- Difficulty dressing yourself
- Difficulty getting in/but of bed
- Difficulty standing up from armless chair
- Difficulty managing money
- Difficulty preparing meals
- Difficulty standing for long periods of time
- Difficult stooping, crouching, kneeling
- Difficulty grasping/holding small objects
- Difficulty lifting or carrying
- Difficulty pushing or pulling large objects
- Difficult attending social event

Signs/symptoms

- Heart rate at rest
- Systolic blood pressure
- Cough regularly
- Leaked/lost control or urine
- General vision
- Difficulty seeing steps/curbs in dim light
- General hearing
- Confusion or inability to remember things

Lab values

- Homocysteine (μmol/L)
- Folatc, scrum (nmol/L)
- Glycohemoglobin (%)
- Red blood cell count (million cells/µL)
- Hemoglobin (g/dL)
- Red cell distribution width (%)
- Lymphocyte percent (%)
- Segmented neutrophils percent (%)
- Other
- Medications
- Self-reported health
- Health compared to
- 1 year ago
- Frequency of healthcare use
- Overnight hospital stays

Sarcopenia

Scale: $100 \mu m$

Figure7

Supp. Figure 1

Figure 2

Validating a Biomarker

- The relationship between the surrogate and the "direct" endpoint must be firmly established. Correlations, are not enough.
- Ideal method: Analyses of multiple studies of <u>known effective drugs</u>, which assess both the direct and surrogate endpoints, in order to establish (and quantitate) the relationship.
- Once validated, a surrogate may be useful for future studies, particularly those with same mechanism of action

FDA.gov

Validating a Biomarker

- Disease-, host-, pathway-, target-specific
- Laboratory measurement (inflammatory markers [CRP, IL-6, IL1a], GDF-15, testosterone)
- Radiographic image (aLBM, muscle mass/density)
- Physical sign (BMI, weight history, weakness, poor performance)
- Other (non-biomarker) measures including PROs: physical dysfunction, anorexia, fatigue
 - Avoid a ceiling effect

Improvement in Life Expectancy at 65 from 1987 to 1993 (Santé-Québec)

58

Sarcopenic Obesity Increases the Risk of CVD more than Sarcopenia and Obesity Alone

Jiang et al., Clinical Nutrition, 2024