

Multidisciplinary Approaches to Cancer Symposium Myelodysplastic Syndrome: Molecular Markers & Management with Novel Drugs

Molecular Markers in MDS

Joo Song, MD

Interim Vice Chair, Department of Pathology

Chief, Division of Hematopathology

Clinical Professor

City of Hope

• I do not have any relevant financial relationships.

This presentation and/or comments will provide a balanced, non-promotional, and evidence-based approach to all diagnostic, therapeutic and/or research related content.

Cultural Linguistic Competency (CLC) & Implicit Bias (IB)

STATE LAW:

The California legislature has passed <u>Assembly Bill (AB) 1195</u>, which states that as of July 1, 2006, all Category 1 CME activities that relate to patient care must include a cultural diversity/linguistics component. It has also passed <u>AB 241</u>, which states that as of January 1, 2022, all continuing education courses for a physician and surgeon **must** contain curriculum that includes specified instruction in the understanding of implicit bias in medical treatment.

The cultural and linguistic competency (CLC) and implicit bias (IB) definitions reiterate how patients' diverse backgrounds may impact their access to care.

EXEMPTION:

Business and Professions Code 2190.1 exempts activities which are dedicated solely to research or other issues that do not contain a direct patient care component.

This presentation is dedicated solely to research or other issues that do not contain a direct patient care component.

Overview of MDS

- Ineffective hematopoiesis
- Peripheral blood
- Bone marrow biopsy

Testing and Prognosis

- Importance of prognostic markers
 - IPSS, IPSS-R, IPSS-M
- Karyotype and FISH analysis
- NGS panel
 - Whole genome sequencing
 - Target sequencing platform

Composition of the	all all a	(1000000000000000000000000000000000000	Compare and	Theread	Contemporate	dimenter de la composition de
Contract of the second	atherate.		actual in the second	Charles Dorne D	attents,	COLUMN .
1,F	and a				Control Control	
000	28		ên î		(1000 California)	ALL DE LE CALLER

Testing

- Types of samples
 - Bone marrow aspirate or clot sections
 - Limitations: Aparticulate clot
 - Peripheral blood
 - Limitations: Low WBC count

Cytogenetics and FISH

- Karyotype
- FISH analysis
- Very Good: -Y, del(11q)
- Good: del(5q), 20q deletions
- Intermediate: +8, del(12p), +19
- Poor: monosomy 7, inv(3)
- Very Poor: Complex karyotype (>3)

P

	Prognostic score value							
	0	0.5	1	1.5	2	3	4	
rognostic category								
ytogenetics	Very good		Good		Intermediate	Poor	Very poor	
M blasts, %	s 2		> 2 to < 5		5-10	> 10		
gb, g/dL	≥ 10		8 to < 10	< 8				
latelets, x 10 ⁹ /L	≥ 100	50 to < 100	< 50					
NC, x 10%/L	≥ 0.8	< 0.8						
ytogenetic group		Characteristics						
ery good		-Y, del(11q)						
ood		Normal, del(5q), del(12p), del(2	20q), de	l(5q) + 1 addition	al abnor	mality	
ntermediate		del(7q), +8, +19	, i(17q), other al	bnormal	ities not in other	groups		
oor	-7, inv(3)/t(3q), -7/del(7q) + 1 additional abnormality, complex (3 abnormalities)							
ery poor	Complex (> 3 abnormalities)							

NGS

- Splicing factor mutations: SF3B1, SRSF2, U2AF1, ZRSR2
- DNA methylation: TET2, DNMT3A, IDH1/IDH2, KMT2A/MLL
- Chromatin modification: ASXL1, EZH2
- Tumor suppressor: TP53
- Signaling pathway: STAG2, JAK2, NRAS/KRAS, FLT3

NGS

• Splicing factor mutations: SF3B1, SRSF2, U2AF1, ZRSR2

Saez et al, Blood 2017

NGS

- DNA methylation: TET2, DNMT3A, IDH1/IDH2
- Histone: KMT2A (Partial Tandem Duplication)

Dor et al, Lancet 2018 Dai et al, J Mol Dia 2021

11

- TP53
 - DNA repair
 - Apoptosis
 - Senescence
 - Angiogenesis
 - Oxidative stress
- Multi-hit TP53
 - Biallelic
 - LOH

IPSS-M

- Incorporates IPSS-R and genomics
- 2957 patients, validated 754 patients
- 31 genes

• Adverse

- TP53 (multi-hit)
- MLL/KMT2A PTD
- FLT3 ITD/TKD
- SF3B1 and 5q-
- Favorable
 - SF3B1 isolated

Bernard et al, NEJM Evidence, 2022

Table 1. IPSS-M Risk Score Construction from an Adjusted Cox Multivariable Regr	ression for Leukemia-Free Survival.
Category and Variable	Adjusted Hazard Ratio (95% CI)
Clinical	
Bone marrow blasts — %	1.07 (1.05-1.09)
min(Platelets,250) — x10 ⁹ /l	0.998 (0.997-0.999)
Hemoglobin — g/dl	0.84 (0.81-0.88)
Cytogenetic	
IPSS-R cytogenetic category§	1.33 (1.21–1.47)
Gene main effects (17 variables, 16 genes)¶	
TP53 ^{multihit}	3.27 (2.38-4.48)
MLL ^{PTD}	2.22 (1.49–3.32)
FLT3 ^{ITD+TKD}	2.22 (1.11-4.45)
<i>SF3B1</i> ^{5q}	1.66 (1.03–2.66)
NPM1	1.54 (0.78–3.02)
RUNX1	1.53 (1.23-1.89)
NRAS	1.52 (1.05-2.20)
ETV6	1.48 (0.98-2.23)
IDH2	1.46 (1.05-2.02)
CBL	1.34 (0.99–1.82)
EZH2	1.31 (0.98–1.75)
U2AF1	1.28 (1.01-1.61)
SRSF2	1.27 (1.03–1.56)
DNMT3A	1.25 (1.02–1.53)
ASXL1	1.24 (1.02–1.51)
KRAS	1 22 (0 84-1 77)
SF3B1 ^α	0.92 (0.74 1.16)
Gene residuals (1 variable, 15 genes; possible values of 0, 1, or 2)	
min(Nres,2)	1.26 (1.12–1.42)

IPSS-M

- Improved prognostic determination compared to IPSS-R
- 46% re-stratified
- Real-World validation (Sauta et al)
- Open access calculator

Bernard et al, NEJM evidence, 2022 Sauta et al, JCO 2023

Summary

14

- IPSS-R still important and relevant for prognostication
- Genomics has an important role (e.g. TP53, MLL, FLT3, SF3B1)
- Molecular is more routinely used
- Improves prognostic accuracy
- Tailored therapeutic decisions