2025 City of Hope Multidisciplinary Thyroid Cancer Symposium

Mechanisms of Thyroid Tumor Resistance to Targeted Therapies

Carmelo Nucera, MD, PhD

Associate Professor, Beth Israel Deaconess Medical Center Harvard Medical School

Disclaimer

This is a Non-CME Accredited Presentation.

I have not conflicts of interest on this Presentation

Disclosure:

Advisory Board Member, Affyimmune

- 1. Translational models of cell autonomous resistance in invasive thyroid cancer
- 2. Role of stem cell-like pericytes in resistance to BRAF^{V600E} inhibitors and tyrosine kinase inhibitors (TKI) Extracellular Matrix (ECM) unit and

Thyroid Carcinoma Coding (Onco)Genes

Tyrosine kinase inhibitors (TKIs) in Clinical Trials for Thyroid Cancer

The median progression-free survival was 18.3 months with Lenvatinib as compared with 3.6 months with placebo (P<0.001)

No. at Risk														
Lenvatinib	261	225	198	176	159	148	136	92	66	44	24	11	3	0
Placebo	131	71	43	29	19	13	11	5	4	2	2	2	0	0

Schlumberger M, et al and Sherman SI, NEJM 2015

Outcome	Lenvatinib (N=261)	Placebo (N=131)
Progression-free survival		
Primary analysis, IRR and ITT populations:		
Median (95% CI) — mo	18.3 (15.1–NE)	3.6 (2.2-3.7)
Rate — % (95% CI)		
6 mo	77.5 (71.7-82.3)	25.4 (18.0-33.6)
12 mo	63.0 (56.5-68.9)	10.5 (5.7-16.9)
18 mo	51.1 (43.3–58.3)	3.8 (1.1-9.2)
24 mo	44.3 (35.1-53.1)	NE
Prespecified sensitivity analyses		
Investigator assessment, ITT population — mo		
Median	16.6	3.7
95% CI	14.8–NE	3.5-5.4
IRR population — mo¶		
Median	16.6	3.6
95% CI	14.8-20.3	2.2-3.7
Secondary efficacy end points		
Overall survival, RPSFT adjusted, ITT population		
Median (95% CI) — mo	NE (22.0-NE)	NE (14.3–NE)
Rate, RPSFT adjusted — % (95% CI)		
6 mo	90.7 (86.4–93.7)	85.3 (78.0–90.4)
12 mo	81.6 (76.2-85.8)	70.0 (57.1–79.7)
18 mo	72.3 (65.7–77.9)	63.0 (44.3–76.9)
24 mo	58.2 (46.0–68.6)	NE
Response rate — no. (%)**	169 (64.8)	2 (1.5)
Complete response	4 (1.5)	0
Partial response	165 (63.2)	2 (1.5)
Stable disease	60 (23.0)	71 (54.2)
Durable stable disease ≥23 wk	40 (15.3)	39 (29.8)
Progressive disease	18 (6.9)	52 (39.7)
Could not be evaluated	14 (5.4)	6 (4.6)

Article

https://doi.org/10.1038/s41591-023-02321-8

Dabrafenib plus trametinib in BRAFV600E-mutated rare cancers: the phase 2 ROAR trial

Table 2 | Best response and ORR in patient cohorts by investigator and independent radiology assessment

Cohorts	Investigator assessment							Independent radiology assessment					
	Best response						Best response						
	CR	PR	SD	PD	NE	RR	CR	PR	SD	PD	NE	RR	
ATC (n=36)	3 (8%)	17 (47%)	11 (31%)	4 (11%)	1 (3%)ª	20 (56%) (38.1%, 72.1%)	2 (6%)	17 (47%)	8 (22%)	8 (22%)	1 (3%)ª	19 (53%) (35.5%, 69.6%)	
BTC (n=43)	0	23 (53%)	16 (37%)	3 (7%)	1 (2%) ^b	23 (53%) (37.7%, 68.8%)	1 (2%)	19 (44%)	15 (35%)	6 (14%)	2 (5%)°	20 (47%) (31.2%, 62.3%)	
ASI (n=3)	_	2 (67%)	_	1 (33%)	_	67% (9.4%, 99.2%)	-	2 (67%)	_	1 (33%)	_	67% (9.4%, 99.2%)	
LGG (n=13)	1 (8%)	6 (46%)	3 (23%)	1 (8%)	0	7 (54%) (25.1%, 80.8%)	1 (8%)	6 (46%)	2 (15%)	0	3 (23%) ^d	7 (54%) (25.1%, 80.8%)	
HGG (n=45)	3 (7%)	12 (27%)	10 (22%)	20 (44%)	0	15 (33%) (20.0%, 49.0%)	3 (7%)	11 (24%)	5 (11%)	21 (47%)	5 (11%)°	14 (31%) (18.2%, 46.6%)	
HCL (n=55)	10 (18%) 26 (47%) ^f	13 (24%)	0	1 (2)	1 (2) ^g	49 (89%) (77.8%, 95.9%)	NA	NA	NA	NA	NA	NA	
MM (n=10)	O ^h	2 (20%) ⁱ	1 (10%)	4 (40%)	0	5 (50%) (18.7%, 81.3%)	NA	NA	NA	NA	NA	NA	

Vivek Subbiah, Robert J. Kreitman, Zev A. Wainberg, Anas Gazzah, Ulrik Lassen, Alexander Stein, Patrick Y. Wen, Sascha Dietrich, Maja J. A. de Jonge, Jean-Yves Blay, Antoine Italiano, Kan Yonemori, Daniel C. Cho, Filip Y. F. L. de Vos, Philippe Moreau, Elena Elez Fernandez, Jan H. M. Schellens, Christoph C. Zielinski, Suman Redhu, Aislyn Boran, Vanessa Q. Passos, Palanichamy Ilankumaran & Yung-Jue Bang

Targeting BRAF^{V600E} by the first FDA-approved orally available selective inhibitor

Wagle N. et al., JCO 2011

Disease progression and death

WHAT IS DRUG RESISTANCE?

Drug resistance is a major cause of cancer treatment failure. While a treatment may be effective initially, the heterogeneity of cancer and its ability to adapt can allow the cancer to become resistant to the treatment and regrow. Solving the puzzle of why this happens and how to overcome or prevent it is a goal that NCI is pursuing on many fronts, including basic science to understand biological mechanisms and clinical trials testing new treatment strategies.

Ongoing dynamic risk of stratification: Incomplete Structural Response to Therapy Tuttle M, Thyroid 2011

Before Treatment

Tumors consist of cancer cells with different molecular features, which may make them sensitive or resistant to different types of treatments.

Responding to Treatment Although, a drug may kill some cancer cells (the sensitive cells), a subset of them almost invariably survives (the resistant cells).

Developing Drug Resistance The cancer cells that are resistant will multiply, contributing to the re-growth of the tumor.

KEY

Resistant cancer cells

Therapy-induced resistant cancer cells

Cell heterogeneity within tumors can be considered a substrate for evolutionary adaptation to the environment *via* Darwinian selection

Tumor resistance and relapse are the outcome of an evolution process driven by a major selective pressure

Model of resistance to vemurafenib in metastatic PDTC patient-derived cells with BRAF^{WT/V600E} mutation and P16 (CDKN2A) deletion

PTC cells^{Naïve}

Antonello Z...et al and Nucera C. et al.

Resistance to BRAF^{V600E} inhibitor triggers an increased tetraploidy/aneuploidy and expansion of clones with chr.5 amplification

+i5px1

Aneuploidy

+i5px1

Trisomy 5

+i5px2

Tetraploidy

Tetrasomy 5

Antonello Z...et al and Nucera C. et al. Oncotarget

Vemurafenib-resistant BRAF^{V600E}-PDTC patient-derived cells acquire *de novo* mutations in RBM genes which contribute to DNA tetraploidy

RBM mutations affect overall survival in aggressive non-anaplastic thyroid cancer

MCL1 (chr.1q) somatic copy number alterations (SCNAs) in metastatic PTC samples

ATC-like DTC harbored aneuploid tumor cells with high-magnitude copy-number

Genomic position (by chromosomes)

Combination cancer therapy can confer benefit via patient-to-patient variability

Population of patients with heterogeneous tumors

Some tumors respond to Drug A

Some tumors respond to Drug B

Highlights:

Anti-cancer drugs have variable efficacy within patient populations.

Drug combinations give each patient more chances that one drug could be effective.

Optimizing combined therapies represents a fundamental approach to design cancer treatments.

Cell 2017

Combined therapy with BRAF^{V600E} and cell cycle inhibitor in metastatic lung pleural effusions PDTC patient-derived cells

Antonello Z...et al and Nucera C. et al. Oncotarget

Take-home messages

Combined therapy represents a novel therapeutic strategy for BRAF^{V600E} thyroid cancer by preventing selection and expansion of aggressive cell clones with somatic copy number alterations (SCNAs).

Cell metabolism/energy alterations provide insights for new therapeutic strategies

Coding Genes for Thyroid Cancer Metabolism

Adapted from Vander Heiden, MG , Cantley, LC.&Thompson, CB Science, 2009

Fine-tuning lipid metabolism by targeting mitochondria-associated Acetyl-CoA-Carboxylase-2 (ACC2) in metastatic BRAF^{V600E} PTC

ACC2 knockdown contributes to resistance to vemurafenib therapy in a xenograft mouse model derived from metastatic BRAF^{WT/V600E} PTC-derived cells, leading to increased tumor cell growth

Valvo V...and Nucera C. Thyroid 2021

Translational Significance

These findings indicate a link between BRAF^{V600E} and lipid metabolism regulation in PTC.

BRAF^{V600E} down-regulates ACC2 levels, which deregulates *de novo* lipid synthesis and FAO, leading to drug resistance and tumor growth.

ACC2 rescue may represent a novel molecular strategy overcoming resistance to BRAF^{V600E} inhibitors in refractory PTC

Experimental metabolic model of ACC genes' functions for thyroid carcinoma cell growth

Thyroid Cancer angiogenic microenvironment and dormancy

BRAF^{V600E}-PTC and Microenvironment Gene Set Signature

Naumov G., Akslen L. and Folkman J., 2006

Nucera C. et al., PNAS 2010

Tumor microenvironment is crucial to elicit resistance to targeted therapy

Pericytes are enriched in the PTC microenvironment

Metastatic PTC, H&E

PTC cells, PAX8+

PTC cells and pericytes, PDGFRB+

Electron Microscopy

Normal Thyroid

Pericytes abundance score in PTC and normal thyroid (NT) clinical samples

Prete A., et al., and Nucera C., Clinical Cancer Research 2018

Pericyte abundance adjusted to the confounding factors in PTC clinical samples

lesato A., et al., and Nucera C., JCEM 2021

Rationale and Premise

The BRAF^{V600E} oncogene modulates the PTC microenvironment.

Microenvironment pericytes are critical regulators of Tyrosine Kinase (TK)-dependent angiogenic signaling pathways.

Assessment of perycite markers

Experimental Design

Workflow to assess the synergy between pericytes and BRAF^{WT/V600E-}PTC cells

Tyrosine kinases (e.g. VEGFR2 and PDGFRB) are expressed in human pericytes

Therapy with BRAF^{V600E} inhibitor plus TKI induces death of PTC cells

Pericyte-derived secretome evocates resistance to targeted therapy in metastatic BRAF^{WT/V600E}-PTC cells

BRAF^{WT/V600E}-PTC cells

Pre-clinical trial with vemurafenib and sorafenib in a novel orthotopic mouse model of human PTC with heterozygous BRAF^{WT/V600E}

6 weeks post-tumor implantation randomized mice

were treated with either vemurafenib, sorafenib, combined therapy, or vehicle by oral gavage

Effects of vemurafenib and sorafenib therapy on orthotopic human BRAF^{WT/V600E}-PTC growth

Expression of TSP-1 and TGFβ1 in the orthotopic human BRAF^{WT/V600E} PTC

Markers	Vehicle	Vemurafenib	Sorafenib	Vemu.+Sora.
TSP-1	1 TC	0 TC	0 TC	0 TC
	2 VE	2 VE	0 VE	2 VE
TGFβ1	2 TC	1 TC	1 TC	1 TC
	2 VE	2 VE	1 VE	2 VE

TC= tumor cells

VE= vessel compartment

Targeting TSP-1 and TGFβ1 interactions

Peptides of key interactions sequences can act as antagonists: The SRI31277 peptide of the LSKL sequence of LAP prevents TSP-1 binding and activation of latent TGFβ1

Targeting TSP-1 inactivates TGFβ1 and reduces growth of BRAF^{WT/V600E} PTC-derived cells cocultured with pericytes

TSP-1/TGFβ1 axis elicits gene regulatory networks and pathways important for drug resistance and angio-invasion in BRAF^{WT/V600E} thyroid tumor samples

lesato A., et al., and Nucera C. Thyroid 2023

Translational relevance and Impact

Pericytes shield BRAF^{V600E}-PTC cells from targeted therapy via TSP-1/TGF β 1, suggesting this axis as a new therapeutic target for overcoming resistance to BRAF^{V600E} and TK inhibitors.

Antagonizing the TSP-1/TGF β 1 axis may represent a novel therapeutic approach with translational applications for BRAF^{WT/V600E}-PTC resistant to targeted therapies.

TSP-1 is a potential biomarker for assessing therapeutic response to BRAF^{V600E} and TK inhibitors in patients with invasive BRAF^{WT/V600E}-PTC.

New model for resistance to BRAF^{V600E} inhibitors and TKI via pericyte

Thyroid-derived pericytes co-cultured with BRAF^{WT/V600E} PTC-derived cells promote tumor cell growth

Lenvatinib elicits significant and robust inhibitory effects on BRAFWT/V600E-PTC cell growth by targeting pericytes

lesato A., et al., and Nucera C., JCEM 2021

The inhibitory effects by lenvatinib on *BRAF^{WT/V600E}*-ATC cells significantly occurred when tumor cells were co-cultured with thyroid-derived pericytes

BRAF^{WT/V600E}-ATC cells co-cultured with pericytes showed significant therapeutic response to lenvatinib *in vivo*

lesato A., et al., and Nucera C. Thyroid 2023

Lenvatinib treatment substantially decreased the number of both tumor cells and pericytes, as well as MIB1 (cell proliferation marker), CD31 (blood endothelial cells marker) and F4-80 (macrophage marker)

lesato A., et al., and Nucera C. Thyroid 2023

Translational Implications

Degree of pericyte abundance may be an attractive prognostic marker in assessing pharmacotherapeutic options

Thyroid tumors derived from pericyte with stem cell-like functions harbor BRAF^{V600E} mutation

Clonality assay (X-chromosome inactivation assay)

Methylation profile

Sadow P....and Nucera C., JNCI 2014

Pericyte-derived tumors

Benign/Normal Thyroid

BRAF^{V600E} positive pericyte-derived thyroid tumors (named MPC)

Results

Targeting BRAF^{V600E} by vemurafenib decreases viability of BRAF^{V600E} positive human thyroid myopericytoma (MPC) cells with stem cell-like features

Results

Knockdown of BRAF^{V600E} induce cell senescence and prevents collagenmediated cell adhesion and migration in primary MPC cells with BRAF^{V600E}

Vemurafenib disrupts in vitro angiogenesis induced by BRAF^{V600E}-MPC cells

Vemurafenib inhibits viability of BRAF^{V600E} human myopericytoma (MPC) cells in MPC patient-derived xenograft mice

Pericyte-derived tumors in the thyroid harbor the BRAF^{V600E} mutation: a novel tumor microenvironment model

Sadow P....and Nucera C., JNCI 2014

Take-home messages

- Intra-tumor heterogeneity and the strategic skills of tumor cells to evolve may be a major challenge to the implementation of precision anti-cancer medicine.
- Driver mutations (e.g. BRAF^{V600E}) are clonal but the presence of copy number variations may be subclonal and resistance mechanisms can evolve rapidly.
- Understanding of the genomic complexity layers (coding and non-coding) by clonal dissection will allow the development of more robust therapeutic strategies.
- Degree of pericyte abundance may be an attractive prognostic marker in assessing pharmaco-therapeutic options.

Thank you!

